Elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry: evidence for mass load induced matrix effects in the ICP during ablation of a silicate glass

2007 ◽  
Vol 22 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Ivana Kroslakova ◽  
Detlef Günther
2015 ◽  
Vol 30 (12) ◽  
pp. 2412-2419 ◽  
Author(s):  
Ryo Machida ◽  
Takashi Nakazawa ◽  
Yuka Sakuraba ◽  
Masahide Fujiwara ◽  
Naoki Furuta

Size-related elemental fractionation during LAL sampling was investigated separately from elemental fractionation in the ICP and the elemental fractionation in the ICP was larger than that observed during LAL sampling.


1997 ◽  
Vol 51 (8) ◽  
pp. 1185-1192 ◽  
Author(s):  
Deborah Figg ◽  
Michael S. Kahr

Three laser wavelengths (1064, 532, and 266 nm) were employed for laser ablation at varied laser pulse energies to study the effect of irradiance and wavelength upon analytical results for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Two important results were observed and are reported here: (1) the intensity of the MS signal came to a local minimum when the laser focal point was on the sample surface, and (2) elemental fractionation based upon laser wavelength and laser pulse energy was observed. For the waste glass simulant studied, ablation with 1064-nm (IR) and 532-nm (green) radiation produced elemental fractionation that relates to the melting point of the elemental oxide, whereas with 266-nm (UV) ablation the response was independent of the elemental oxide melting point. At high laser powers, ablation at 266 nm produced an elemental bias based upon the mass of the elements. These observations suggest the use of ultraviolet radiation at low pulse energies to obtain improved analytical results.


2019 ◽  
Vol 34 (6) ◽  
pp. 1126-1134 ◽  
Author(s):  
Xiuhong Liao ◽  
Zhaochu Hu ◽  
Tao Luo ◽  
Wen Zhang ◽  
Yongsheng Liu ◽  
...  

Water-related interferences and matrix effects in ICP-MS are dramatically reduced by using laser ablation solution sampling.


Geochronology ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 155-167
Author(s):  
Marcel Guillong ◽  
Jörn-Frederik Wotzlaw ◽  
Nathan Looser ◽  
Oscar Laurent

Abstract. We document that the reliability of carbonate U–Pb dating by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is improved by matching the aspect ratio of the LA single-hole drilling craters and propagating long-term excess variance and systematic uncertainties. We investigated the impact of different matrices and ablation crater geometries using U–Pb isotope analyses of one primary (WC-1) and two secondary reference materials (RMs). Validation RMs (VRMs) include a previously characterised one (ASH-15D) and a new candidate (JT), characterised by ID-TIMS (intercept age: 13.797±0.031 Ma) with excellent agreement to pooled LA-ICP-MS measurements (13.75±0.11 | 0.36 Ma), a U concentration of approx. 1 µg g−1 and 238U∕206Pb ratios from 5 to 460, defining the isochron well. Differences in ablation crater depth to diameter ratios (aspect ratio) introduce an offset due to downhole fractionation and/or matrix effects. This effect can be observed either when the crater size between U–Pb RM and the sample changes or when the ablation rate for the sample is different than for the RM. Observed deviations are up to 20 % of the final intercept age depending on the degree of crater geometry mismatch. The long-term excess uncertainty was calculated to be in the range of 2 % (ASH-15D) to 2.5 % (JT), and we recommend propagating this uncertainty into the uncertainty of the final results. Additionally, a systematic offset to the ID-TIMS age of 2 %–3 % was observed for ASH-15D but not for JT. This offset might be due to different ablation rates of ASH-15D compared to the primary RM or remaining matrix effects, even when the aspect ratios chosen are similar.


Sign in / Sign up

Export Citation Format

Share Document