Promising vanadium oxide and hydroxide nanostructures: from energy storage to energy saving

2010 ◽  
Vol 3 (9) ◽  
pp. 1191 ◽  
Author(s):  
Changzheng Wu ◽  
Yi Xie
2022 ◽  
Author(s):  
Murugan Nanthagopal ◽  
Palanisamy Santhoshkumar ◽  
Chang Won Ho ◽  
Nitheesha Shaji ◽  
Gyu Sang Sim ◽  
...  

Author(s):  
Damilola Elizabeth Babatunde ◽  
Iheanacho Henry Denwigwe ◽  
Olubayo Moses Babatunde ◽  
Oluranti Agboola ◽  
Gbemisola Deborah Akinsipe

Reliable energy systems and advances in nanotechnology together will play key role in channeling future cutting edge inventions and developments in all spheres. In this review article, the pertinence of functionalizing nanofillers and modifying nanocomposites for improved performance in various energy applications such as energy conversion, energy efficiency, energy storage, alternative energy and energy saving are expounded. This article also presents structures and unique properties of commonly used nanofillers; advances, improvement potentials and characterization of nanocomposites used in energy systems. Theoretical and experimental literature reviewed revealed that nanofillers engender improved properties in polymeric matrices. Functionalization is applicable to all types of nanofillers in use today, a number of functionalized nanofillers are already commercially available; and more extensive research is needed to achieve optimal improved results with the use of nanofillers and nanocomposites in various fields of applications.


Author(s):  
Damilola Elizabeth Babatunde ◽  
Iheanacho Henry Denwigwe ◽  
Olubayo Moses Babatunde ◽  
Oluranti Agboola ◽  
Gbemisola Deborah Akinsipe

Reliable energy systems and advances in nanotechnology together will play key role in channeling future cutting edge inventions and developments in all spheres. In this review article, the pertinence of functionalizing nanofillers and modifying nanocomposites for improved performance in various energy applications such as energy conversion, energy efficiency, energy storage, alternative energy and energy saving are expounded. This article also presents structures and unique properties of commonly used nanofillers; advances, improvement potentials and characterization of nanocomposites used in energy systems. Theoretical and experimental literature reviewed revealed that nanofillers engender improved properties in polymeric matrices. Functionalization is applicable to all types of nanofillers in use today, a number of functionalized nanofillers are already commercially available; and more extensive research is needed to achieve optimal improved results with the use of nanofillers and nanocomposites in various fields of applications.


2020 ◽  
Vol 10 (12) ◽  
pp. 4336
Author(s):  
Yue Hu ◽  
Per Kvols Heiselberg ◽  
Tine Steen Larsen

A ventilated window system enhanced by phase change material (PCM) has been developed, and its energy-saving potential examined in previous works. In this paper, the ventilation control strategies are further developed, to improve the energy-saving potential of the PCM energy storage. The influence of ventilation airflow rate on the energy-saving potential of the PCM storage is firstly studied based on an EnergyPlus model of a sustainable low energy house located in New York. It shows that in summer, the optimized ventilation airflow rate is 300 m3/h. The energy-saving of utilizing a ventilated window with PCM energy storage is 10.1% compared to using a stand-alone ventilated window, and 12.0% compared to using a standard window. In winter, the optimized ventilation airflow rate is 102 m3/h. The energy-saving of utilizing a ventilated window with PCM energy storage is 26.6% compared to using a stand-alone ventilated window, and 32.8% compared to using a standard window. Based on the optimized ventilation airflow rate, a demand control ventilation strategy, which personalizes the air supply and heat pump setting based on the demand of each room, is proposed and its energy-saving potential examined. The results show that the energy savings of using demand control compared to a constant ventilation airflow rate in the house is 14.7% in summer and 30.4% in winter.


Inventions ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 62
Author(s):  
Mahdiyeh Khodaparastan ◽  
Ahmed Mohamed

Energy storage technologies are developing rapidly, and their application in different industrial sectors is increasing considerably. Electric rail transit systems use energy storage for different applications, including peak demand reduction, voltage regulation, and energy saving through recuperating regenerative braking energy. In this paper, a comprehensive review of supercapacitors and flywheels is presented. Both are compared based on their general characteristics and performances, with a focus on their roles in electric transit systems when used for energy saving, peak demand reduction, and voltage regulation. A cost analysis is also included to provide initial guidelines on the selection of the appropriate technology for a given transit system.


2021 ◽  
Vol 33 ◽  
pp. 101887
Author(s):  
Abderraouf Bouakkaz ◽  
Antonio J. Gil Mena ◽  
Salim Haddad ◽  
Mario Luigi Ferrari

Sign in / Sign up

Export Citation Format

Share Document