Polymer Nanocomposites for Advanced Engineering and Military Applications - Advances in Chemical and Materials Engineering
Latest Publications


TOTAL DOCUMENTS

11
(FIVE YEARS 11)

H-INDEX

2
(FIVE YEARS 2)

Published By IGI Global

9781522578383, 9781522578390

Author(s):  
Dipanwita Majumdar

Polyaniline in various forms has been widely explored as an electrode material for supercapacitors due to its high theoretical charge storage capacity, facile-cost-effective synthesis, good mechanical strength and ultrafast charge transport. However, commercialization of such pristine forms is very much restricted by low solubilities, rapid agglomeration during device design accompanied by poor electrochemical life and fast environmental decomposition. The blending with nano-carbon materials, metal oxides and other competent materials, may result in high quality materials– “nanocomposites” with superior features is ideally fit for future generation energy storage devices. The present chapter deals with detailed discussions on designing, the fabrication of such binary and ternary nanocomposites, correlating their morphology with electrochemical behavior, so as to optimize their supercapacitive performances. Such an attempt would help to outline the present status and future aspects of these materials which will be of first-hand assistance especially to the beginners to this field of research.


Author(s):  
Damilola Elizabeth Babatunde ◽  
Iheanacho Henry Denwigwe ◽  
Olubayo Moses Babatunde ◽  
Oluranti Agboola ◽  
Gbemisola Deborah Akinsipe

Reliable energy systems and advances in nanotechnology together will play key role in channeling future cutting edge inventions and developments in all spheres. In this review article, the pertinence of functionalizing nanofillers and modifying nanocomposites for improved performance in various energy applications such as energy conversion, energy efficiency, energy storage, alternative energy and energy saving are expounded. This article also presents structures and unique properties of commonly used nanofillers; advances, improvement potentials and characterization of nanocomposites used in energy systems. Theoretical and experimental literature reviewed revealed that nanofillers engender improved properties in polymeric matrices. Functionalization is applicable to all types of nanofillers in use today, a number of functionalized nanofillers are already commercially available; and more extensive research is needed to achieve optimal improved results with the use of nanofillers and nanocomposites in various fields of applications.


Author(s):  
Ayesha Kausar

This chapter outlines important aspects and progression from graphene to polymer/graphene nanocomposite to a relevant defense application. Graphene is unique nanocarbon material having a large surface area, high Young's modulus, thermal conductivity, electrical conductivity, and optical transmittance. Engineering thermoplastic polymers have been employed as matrices for graphene reinforcement. Various routes have been employed for graphene-filled polymeric nanomaterials. Intrinsic physical properties of nanocomposite depend on graphene modification and dispersion techniques. Polymer/graphene nanocomposite may have multifunctional characteristics due to synergistic effect of polymer/graphene. The article mainly discusses nanocomposite with potential uses in soldierly applications including flame resistance, ballistic protection, electromagnetic interference shielding, electrostatic-charge dissipation, sensors, corrosion protection, fuel cell, batteries, etc. The gestalt of defense applications of polymer/graphene nanocomposite may offer future perspective to develop promising materials.


Author(s):  
Rajiv Borah ◽  
Ashok Kumar

This chapter includes detailed review of the research undertaken with conducting polymer (CP) based composites with chitosan (Ch) for tissue engineering till date. The beneficial role of electrically conductive biomaterials has been discussed with the possible strategies to overcome the shortcomings of CP alone through blending with Ch due to its excellent biocompatibility, biodegradability, and bioactivity. Additionally, this embodiment deals with the optimization and characterization of electrically conductive, biocompatible and biodegradable Polyaniline: Chitosan (PAni:Ch) nanocomposites as cell culture substrates for MDA-MB-231 and NIH 3T3 fibroblast in order to examine the combined effect of nanofiber structure and surface modification on cell-biomaterial interactions. The nanocomposites were further checked as a conductive scaffold for electrical stimulation of a neuronal model PC12 cell line in order to explore the potential of the materials in neural tissue engineering.


Author(s):  
S. S. Pesetskii ◽  
S. P. Bogdanovich ◽  
V. N. Aderikha

Results of the studies of technology, structural features and properties of polymer/clay nanocomposites (n-PCM) prepared by melt compounding of thermoplastic polymers are systematized. Special attention is given to the analysis of the effect of nanoclays modification with surfactants on properties of nanocomposites and preparation features of nanomaterials based on polar, non-polar thermoplastics and polymer blends. Effect of technological factors and special compounding regimes in the technology of n-PCM with advanced technical characteristics is considered. Results of the original studies of the structure and properties of the hybrid composites, filled by high modulus fibers in addition to nanoclays, are presented.


Author(s):  
Dipanwita Majumdar

Sky-high renewable energy demands urged the revolutionary development of environment benign, portable and miniatured, high power generating energy storage systems in the form of electrochemical capacitors commonly known as “supercapacitors” or “ultracapacitors”. Supercapacitor designing requires smart electrode materials for providing higher energy and power densities, mechanical and electrochemical durability, enhanced thermal operating range with minimal production and maintenance cost. Polyaniline, as conducting polymer, particularly in nano-morphology, has been one of the pioneer electroactive materials paving the corridor for commercial development of pseudocapacitors. Considering these points, the chapter initially concentrates on basic concepts of fabrication, designing and performance evaluation procedure of supercapacitors, followed by discussion on the role of PANI as potential supercapacitor electrode material, delineating current achievements and major challenges encountered in the process of progress so as to obtain superior electrochemical energy storage systems in the near future.


Author(s):  
Victor Odhiambo Shikuku ◽  
Tome Sylvain

Geopolymers are amorphous aluminosilicates with some varied applications. However, the use of geopolymers in water treatment is a relatively new subject. This chapter discusses developments in synthesis, properties and applications of geopolymers and their composites for removal of heavy metals and dyes from water including reduction of hardness in water. The adsorption mechanisms and effects of various environmental conditions on adsorption efficiency are also highlighted. The chapter demonstrates that geopolymers are low cost and environmentally benign materials for wastewater treatment and offers opportunities as alternative adsorbents for sequestration of various pollutants from water subject to further investigations.


Author(s):  
Emmanuel Rotimi Sadiku ◽  
Oluranti Agboola ◽  
Mokgaotsa Jonas Mochane ◽  
Victoria Oluwaseun Fasiku ◽  
Shesan John Owonubi ◽  
...  

Previously, applications of composites were limited to the military aerospace. This is because civilian aircraft with composites inclusions was considered to be too expensive. The use of composite in aircrafts, instead of steel, has resulted in lightweight aircraft structures and has consequently reduced the level of fuel consumption and costs of fuel, thereby reducing CO2 emissions. Undoubtedly, nanocomposites applications abound in several aspects of human life and the use of nanoparticle in materials dates back to the understanding of the nature of these materials. This chapter will focus on the use of nanopolymers in the aerospace and in the military. Particular attention will be given to nano military weapons, nanocoating for military applications, nanotechnology for military drones, nanotechnology in military suits, gloves, boots and nanotechnology in armored military vehicles, aircraft, and military ships and in military medicine.


Author(s):  
Sudheer Kumar ◽  
Sukhila Krishnan ◽  
Sushanta Kumar Samal ◽  
Smita Mohanty ◽  
Sanjay Kumar Nayak

Corrosion is the foremost reason for the deterioration of metallic components used in harsh environments and hence research on the development of an innovative protective system with admirable performance has become a subject of leading importance. Currently, chromates free organic or the polymer coatings on the metal substrate bestow an efficient barrier amongst the metal and inhibit corrosion and save the environment. Researchers have involved in the development of polymer coating containing nanoparticles because reinforcement of nanoparticles decreases the porosity and provides a zig-zag diffusion path which in turn forms barrier layer on the metal surface to protect the metal from the harmful corrosive species. This present chapter deliberates the application of polymer-based nanocomposite coating to mitigate the corrosion of metals against harsh environment. This chapter covers the utilization of carbon-based nanoparticles, inorganic nanoparticle, conductive polymer, self-heling polymer, etc., and could shows a new insight to for anti-corrosive metal surface protective coating.


Author(s):  
Francis Boluwaji Elehinafe ◽  
Augustine Omoniyi Ayeni

This chapter gives an overview of polymer-based nanocomposites (PMNC), focusing on the processing. Polymers such as condensation polymers, vinyl polymers, polyolefins, specialty polymers including biodegradable are used in production of PMNC. It is the reinforcement that is in the nanorange size in nanocomposites generally. Reinforcements used are metal powders, silica, clays, and metal oxides. The most important methods of preparing PMNC are intercalation of the polymer or pre-polymer from solution, in-situ intercalative polymerization, melt intercalation, direct mixture of polymer and particulates, template synthesis, in-situ polymerization; and sol-gel process. The structure of polymer-based nanocomposites consists of the matrix material containing the nanosized reinforcement components in the forms of whiskers, particles, nanotubes, fibers, etc. It is clear that polymer-based nanocomposites provide many benefits such as improved properties, minimization of solid wastes films, and lower and improved manufacturing capabilities.


Sign in / Sign up

Export Citation Format

Share Document