scholarly journals Beyond PDMS: off-stoichiometry thiol–ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices

Lab on a Chip ◽  
2011 ◽  
Vol 11 (18) ◽  
pp. 3136 ◽  
Author(s):  
Carl Fredrik Carlborg ◽  
Tommy Haraldsson ◽  
Kim Öberg ◽  
Michael Malkoch ◽  
Wouter van der Wijngaart
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1382
Author(s):  
Roberto Paoli ◽  
Davide Di Giuseppe ◽  
Maider Badiola-Mateos ◽  
Eugenio Martinelli ◽  
Maria Jose Lopez-Martinez ◽  
...  

Microfabrication and Polydimethylsiloxane (PDMS) soft-lithography techniques became popular for microfluidic prototyping at the lab, but even after protocol optimization, fabrication is yet a long, laborious process and partly user-dependent. Furthermore, the time and money required for the master fabrication process, necessary at any design upgrade, is still elevated. Digital Manufacturing (DM) and Rapid-Prototyping (RP) for microfluidics applications arise as a solution to this and other limitations of photo and soft-lithography fabrication techniques. Particularly for this paper, we will focus on the use of subtractive DM techniques for Organ-on-a-Chip (OoC) applications. Main available thermoplastics for microfluidics are suggested as material choices for device fabrication. The aim of this review is to explore DM and RP technologies for fabrication of an OoC with an embedded membrane after the evaluation of the main limitations of PDMS soft-lithography strategy. Different material options are also reviewed, as well as various bonding strategies. Finally, a new functional OoC device is showed, defining protocols for its fabrication in Cyclic Olefin Polymer (COP) using two different RP technologies. Different cells are seeded in both sides of the membrane as a proof of concept to test the optical and fluidic properties of the device.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 49
Author(s):  
Dhanesh G. Kasi ◽  
Mees N. S. de Graaf ◽  
Paul A. Motreuil-Ragot ◽  
Jean-Phillipe M. S. Frimat ◽  
Michel D. Ferrari ◽  
...  

Organ-on-a-chip (OoC) and microfluidic devices are conventionally produced using microfabrication procedures that require cleanrooms, silicon wafers, and photomasks. The prototyping stage often requires multiple iterations of design steps. A simplified prototyping process could therefore offer major advantages. Here, we describe a rapid and cleanroom-free microfabrication method using maskless photolithography. The approach utilizes a commercial digital micromirror device (DMD)-based setup using 375 nm UV light for backside exposure of an epoxy-based negative photoresist (SU-8) on glass coverslips. We show that microstructures of various geometries and dimensions, microgrooves, and microchannels of different heights can be fabricated. New SU-8 molds and soft lithography-based polydimethylsiloxane (PDMS) chips can thus be produced within hours. We further show that backside UV exposure and grayscale photolithography allow structures of different heights or structures with height gradients to be developed using a single-step fabrication process. Using this approach: (1) digital photomasks can be designed, projected, and quickly adjusted if needed; and (2) SU-8 molds can be fabricated without cleanroom availability, which in turn (3) reduces microfabrication time and costs and (4) expedites prototyping of new OoC devices.


Author(s):  
Shuo Wang ◽  
Peter Shankles ◽  
Scott Retterer ◽  
Yong Tae Kang ◽  
Chang Kyoung Choi

Abstract Opto-microfluidic methods have advantages for manufacturing complex shapes or structures of micro particles/hydrogels. Most of these microfluidic devices are made of polydimethylsiloxane (PDMS) by soft lithography because of its flexibility of designing and manufacturing. However, PDMS scatters ultraviolet (UV) light, which polymerizes the photocrosslinkable materials at undesirable locations and clogs the microfluidic devices. A fluorescent dye has previously been employed to absorb the scattered UV light and shift its wavelength to effectively solve this issue. However, this method is limited due to the cost of the materials (tens of dollars per microchip), the time consumed on synthesizing the fluorescent material and verifying its quality (two to three days). More importantly, significant expertise on material synthesis and characterization is required for users of the opto-microfluidic technique. The cost of preliminary testing on multiple iterations of different microfluidic chip designs would also be excessive. Alternatively, with a delicate microchannel design, we simply inserted aluminum foil strips (AFS) inside the PDMS device to block the scattered UV light. By using this method, the UV light was limited to the exposure region so that the opto-microfluidic device could consistently generate microgels longer than 6 h. This is a nearly cost- and labor-free method to solve this issue.


2016 ◽  
Vol 20 (12) ◽  
Author(s):  
Antonio Liga ◽  
Jonathan A. S. Morton ◽  
Maïwenn Kersaudy-Kerhoas

Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 387
Author(s):  
Carlos Toshiyuki Matsumi ◽  
Wilson José da Silva ◽  
Fábio Kurt Schneider ◽  
Joaquim Miguel Maia ◽  
Rigoberto E. M. Morales ◽  
...  

Microbubbles have various applications including their use as carrier agents for localized delivery of genes and drugs and in medical diagnostic imagery. Various techniques are used for the production of monodisperse microbubbles including the Gyratory, the coaxial electro-hydrodynamic atomization (CEHDA), the sonication methods, and the use of microfluidic devices. Some of these techniques require safety procedures during the application of intense electric fields (e.g., CEHDA) or soft lithography equipment for the production of microfluidic devices. This study presents a hybrid manufacturing process using micropipettes and 3D printing for the construction of a T-Junction microfluidic device resulting in simple and low cost generation of monodisperse microbubbles. In this work, microbubbles with an average size of 16.6 to 57.7 μm and a polydispersity index (PDI) between 0.47% and 1.06% were generated. When the device is used at higher bubble production rate, the average diameter was 42.8 μm with increased PDI of 3.13%. In addition, a second-order polynomial characteristic curve useful to estimate micropipette internal diameter necessary to generate a desired microbubble size is presented and a linear relationship between the ratio of gaseous and liquid phases flows and the ratio of microbubble and micropipette diameters (i.e., Qg/Ql and Db/Dp) was found.


2019 ◽  
Vol 3 (1) ◽  
pp. 26 ◽  
Author(s):  
Mohamed Mohamed ◽  
Hitendra Kumar ◽  
Zongjie Wang ◽  
Nicholas Martin ◽  
Barry Mills ◽  
...  

With the dramatic increment of complexity, more microfluidic devices require 3D structures, such as multi-depth and -layer channels. The traditional multi-step photolithography is time-consuming and labor-intensive and also requires precise alignment during the fabrication of microfluidic devices. Here, we present an inexpensive, single-step, and rapid fabrication method for multi-depth microfluidic devices using a high-resolution liquid crystal display (LCD) stereolithographic (SLA) three-dimensional (3D) printing system. With the pixel size down to 47.25 μm, the feature resolutions in the horizontal and vertical directions are 150 μm and 50 μm, respectively. The multi-depth molds were successfully printed at the same time and the multi-depth features were transferred properly to the polydimethylsiloxane (PDMS) having multi-depth channels via soft lithography. A flow-focusing droplet generator with a multi-depth channel was fabricated using the presented 3D printing method. Experimental results show that the multi-depth channel could manipulate the morphology and size of droplets, which is desired for many engineering applications. Taken together, LCD SLA 3D printing is an excellent alternative method to the multi-step photolithography for the fabrication of multi-depth microfluidic devices. Taking the advantages of its controllability, cost-effectiveness, and acceptable resolution, LCD SLA 3D printing can have a great potential to fabricate 3D microfluidic devices.


Sign in / Sign up

Export Citation Format

Share Document