Development of an in situ dissolved oxygen measurement system and calculation of its effective diffusion coefficient in a biofilm

2012 ◽  
Vol 4 (8) ◽  
pp. 2242 ◽  
Author(s):  
Yun-Fang Ning ◽  
You-Peng Chen ◽  
Shan Li ◽  
Jin-Song Guo ◽  
Xu Gao ◽  
...  
2010 ◽  
Vol 106 (6) ◽  
pp. 928-937 ◽  
Author(s):  
Ryan S. Renslow ◽  
Paul D. Majors ◽  
Jeffrey S. McLean ◽  
Jim K. Fredrickson ◽  
Bulbul Ahmed ◽  
...  

2012 ◽  
Vol 550-553 ◽  
pp. 158-163 ◽  
Author(s):  
Zi Yuan Liu ◽  
Sheng Li Chen ◽  
Peng Dong ◽  
Xiu Jun Ge

Through the measured effective diffusion coefficients of Dagang vacuum residue supercritical fluid extraction and fractionation (SFEF) fractions in FCC catalysts and SiO2model catalysts, the relation between pore size of catalyst and effective diffusion coefficient was researched and the restricted diffusion factor was calculated. The restricted diffusion factor in FCC catalysts is less than 1 and it is 1~2 times larger in catalyst with polystyrene (PS) template than in conventional FCC catalyst without template, indicating that the diffusion of SFEF fractions in the two FCC catalysts is restricted by the pore. When the average molecular diameter is less than 1.8 nm, the diffusion of SFEF fractions in SiO2model catalyst which average pore diameter larger than 5.6 nm is unrestricted. The diffusion is restricted in the catalyst pores of less than 8 nm for SFEF fractions which diameter more than 1.8 nm. The tortuosity factor of SiO2model catalyst is obtained to be 2.87, within the range of empirical value. The effective diffusion coefficient of the SFEF fractions in SiO2model catalyst is two orders of magnitude larger than that in FCC catalyst with the same average pore diameter. This indicate that besides the ratio of molecular diameter to the pore diameter λ, the effective diffusion coefficient is also closely related to the pore structure of catalyst. Because SiO2model catalyst has uniform pore size, the diffusion coefficient can be precisely correlated with pore size of catalyst, so it is a good model material for catalyst internal diffusion investigation.


Sign in / Sign up

Export Citation Format

Share Document