Preparation, microstructure characterization and catalytic performance of Cu/ZnO and ZnO/Cu composite nanoparticles for liquid phase methanol synthesis

2012 ◽  
Vol 14 (22) ◽  
pp. 8170 ◽  
Author(s):  
Mahmoud A. Sliem ◽  
Stuart Turner ◽  
Denise Heeskens ◽  
Suresh Babu Kalidindi ◽  
Gustaaf Van Tendeloo ◽  
...  
Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 283
Author(s):  
Oxana Kholdeeva ◽  
Nataliya Maksimchuk

In recent years, metal–organic frameworks (MOFs) have received increasing attention as selective oxidation catalysts and supports for their construction. In this short review paper, we survey recent findings concerning use of MOFs in heterogeneous liquid-phase selective oxidation catalysis with the green oxidant–aqueous hydrogen peroxide. MOFs having outstanding thermal and chemical stability, such as Cr(III)-based MIL-101, Ti(IV)-based MIL-125, Zr(IV)-based UiO-66(67), Zn(II)-based ZIF-8, and some others, will be in the main focus of this work. The effects of the metal nature and MOF structure on catalytic activity and oxidation selectivity are analyzed and the mechanisms of hydrogen peroxide activation are discussed. In some cases, we also make an attempt to analyze relationships between liquid-phase adsorption properties of MOFs and peculiarities of their catalytic performance. Attempts of using MOFs as supports for construction of single-site catalysts through their modification with heterometals will be also addressed in relation to the use of such catalysts for activation of H2O2. Special attention is given to the critical issues of catalyst stability and reusability. The scope and limitations of MOF catalysts in H2O2-based selective oxidation are discussed.


1992 ◽  
Vol 10 (9) ◽  
pp. 1501-1521 ◽  
Author(s):  
P vijayaraghavan ◽  
Conrad J. Kulik ◽  
Sunggyu Lee

2020 ◽  
Vol 10 (5) ◽  
pp. 1752 ◽  
Author(s):  
Felipe Sanchez ◽  
Ludovica Bocelli ◽  
Davide Motta ◽  
Alberto Villa ◽  
Stefania Albonetti ◽  
...  

Hydrogen is one of the most promising energy carriers for the production of electricity based on fuel cell hydrogen technology. Recently, hydrogen storage chemicals, such as formic acid, have been proposed to be part of the long-term solution towards hydrogen economy for the future of our planet. Herein we report the synthesis of preformed Pd nanoparticles using colloidal methodology varying a range of specific experimental parameters, such as the amount of the stabiliser and reducing agent, nature of support and Pd loading of the support. The aforementioned parameters have shown to affect mean Pd particle size, Pd oxidation, atomic content of Pd on the surface as well as on the catalytic performance towards formic acid decomposition. Reusability studies were carried out using the most active monometallic Pd material with a small loss of activity after five uses. The catalytic performance based on the Au–Pd atomic ratio was evaluated and the optimum catalytic performance was found to be with the Au/Pd atomic ratio of 1/3, indicating that the presence of a small amount of Pd is essential to promote significantly Au activity for the liquid phase decomposition of formic acid. Thorough characterisation has been carried out by means of XPS, SEM-EDX, TEM and BET. The observed catalytic performance is discussed in terms of the structure/morphology and composition of the supported Pd and Au–Pd nanoparticles.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 674 ◽  
Author(s):  
Haodong Tang ◽  
Bin Xu ◽  
Meng Xiang ◽  
Xinxin Chen ◽  
Yao Wang ◽  
...  

Nitrogen-doped activated carbon (N-AC) obtained through the thermal treatment of a mixture of HNO3-pretreated activated carbon (AC) and urea under N2 atmosphere at 600 °C was used as the carrier of Pd catalyst for both liquid-phase hydrodechlorination of 2,4-dichlorophenol (2,4-DCP) and gas-phase hydrodechlorination of chloropentafluoroethane (R-115). The effects of nitrogen doping on the dispersion and stability of Pd, atomic ratio of Pd/Pd2+ on the surface of the catalyzer, the catalyst’s hydrodechlorination activity, as well as the stability of N species in two different reaction systems were investigated. Our results suggest that, despite no improvement in the dispersion of Pd, nitrogen doping may significantly raise the atomic ratio of Pd/Pd2+ on the catalyst surface, with a value of 1.2 on Pd/AC but 2.2 on Pd/N-AC. Three types of N species, namely graphitic, pyridinic, and pyrrolic nitrogen, were observed on the surface of Pd/N-AC, and graphitic nitrogen was stable in both liquid-phase hydrodechlorination of 2,4-DCP and gas-phase hydrodechlorination of R-115, with pyridinic and pyrrolic nitrogen being unstable during gas-phase hydrodechlorination of R-115. As a result, the average size of Pd nanocrystals on Pd/N-AC was almost kept unchanged after liquid-phase hydrodechlorination of 2,4-DCP, whereas crystal growth of Pd was clearly observed on Pd/N-AC after gas-phase hydrodechlorination of R-115. The activity test revealed that Pd/N-AC exhibited a much better performance than Pd/AC in liquid-phase hydrodechlorination of 2,4-DCP, probably due to the enhanced stability of Pd exposed to the environment resulting from nitrogen doping as suggested by the higher atomic ratio of Pd/Pd2+ on the catalyst surface. In the gas-phase hydrodechlorination of R-115, however, a more rapid deactivation phenomenon occurred on Pd/N-AC than on Pd/AC despite a higher activity initially observed on Pd/N-AC, hinting that the stability of pyridinic and pyrrolic nitrogen plays an important role in the determination of catalytic performance of Pd/N-AC.


2018 ◽  
Vol 28 (6) ◽  
pp. 603-605 ◽  
Author(s):  
Igor S. Mashkovsky ◽  
Nadezhda S. Smirnova ◽  
Pavel V. Markov ◽  
Galina N. Baeva ◽  
Galina O. Bragina ◽  
...  

2021 ◽  
Vol 311 ◽  
pp. 110678
Author(s):  
Virginia M. Vaschetti ◽  
Griselda A. Eimer ◽  
Analía L. Cánepa ◽  
Sandra G. Casuscelli

Catalysts ◽  
2017 ◽  
Vol 7 (5) ◽  
pp. 155 ◽  
Author(s):  
Mingzhou Wu ◽  
Yu Fu ◽  
Wangcheng Zhan ◽  
Yanglong Guo ◽  
Yun Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document