Inhibitors of transcription factor nuclear factor-kappa beta (NF-κβ)-DNA binding

RSC Advances ◽  
2013 ◽  
Vol 3 (5) ◽  
pp. 1282-1296 ◽  
Author(s):  
Rakesh Kumar Sharma ◽  
Masami Otsuka ◽  
Garima Gaba ◽  
Shilpa Mehta
Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1335
Author(s):  
Marina Mostafizar ◽  
Claudia Cortes-Pérez ◽  
Wanda Snow ◽  
Jelena Djordjevic ◽  
Aida Adlimoghaddam ◽  
...  

The transcription factor nuclear factor kappa B (NF-κB) is highly expressed in almost all types of cells. NF-κB is involved in many complex biological processes, in particular in immunity. The activation of the NF-κB signaling pathways is also associated with cancer, diabetes, neurological disorders and even memory. Hence, NF-κB is a central factor for understanding not only fundamental biological presence but also pathogenesis, and has been the subject of intense study in these contexts. Under healthy physiological conditions, the NF-κB pathway promotes synapse growth and synaptic plasticity in neurons, while in glia, NF-κB signaling can promote pro-inflammatory responses to injury. In addition, NF-κB promotes the maintenance and maturation of B cells regulating gene expression in a majority of diverse signaling pathways. Given this, the protein plays a predominant role in activating the mammalian immune system, where NF-κB-regulated gene expression targets processes of inflammation and host defense. Thus, an understanding of the methodological issues around its detection for localization, quantification, and mechanistic insights should have a broad interest across the molecular neuroscience community. In this review, we summarize the available methods for the proper detection and analysis of NF-κB among various brain tissues, cell types, and subcellular compartments, using both qualitative and quantitative methods. We also summarize the flexibility and performance of these experimental methods for the detection of the protein, accurate quantification in different samples, and the experimental challenges in this regard, as well as suggestions to overcome common challenges.


1993 ◽  
Vol 13 (5) ◽  
pp. 3093-3102
Author(s):  
B S Yang ◽  
J D Gilbert ◽  
S O Freytag

Overexpression of Myc in cells can suppress the transcription of specific genes. Because several of these genes have common transcriptional regulatory elements, we investigated the possibility that this effect of Myc is mediated through a specific transcription factor. In vitro DNA-binding assays detect only one form of CCAAT transcription factor/nuclear factor 1 (CTF/NF-1) in quiescent 3T3-L1 cells. By contrast, quiescent 3T3-L1 cells that stably overexpress either c-Myc or N-Myc contain at least three forms of CTF/NF-1. Biochemical characterization of the various CTF/NF-1 forms showed that they have the same native molecular weight but differ in charge density. The more negatively charged CTF/NF-1 forms present in Myc-overexpressing cells are converted into that found in normal cells by treatment with acid phosphatase, suggesting that they represent a more phosphorylated form of the CTF/NF-1 protein. The various CTF/NF-1 forms have a similar DNA-binding affinity. Transfection experiments demonstrated that transcription from CTF/NF-1-dependent promoters is specifically suppressed in cells that stably overexpress c-Myc. This effect requires CTF/NF-1 binding. CTF/NF-1-dependent promoter activity is also suppressed in 3T3-L1 cells during active growth (relative to the quiescent state). Interestingly, actively growing 3T3-L1 cells contain forms of CTF/NF-1 similar to those in quiescent cells that stably overexpress c-Myc. Thus, the CTF/NF-1 forms present in cells that express high amounts of c-Myc correlate with a lower transcription rate of CTF/NF-1-dependent promoters in vivo. Our results provide a basis for the suppression of specific gene transcription by c-Myc.


2007 ◽  
Vol 19 (2) ◽  
pp. 154-161 ◽  
Author(s):  
R.O. Escárcega ◽  
S. Fuentes-Alexandro ◽  
M. García-Carrasco ◽  
A. Gatica ◽  
A. Zamora

Sign in / Sign up

Export Citation Format

Share Document