scholarly journals Challenges with Methods for Detecting and Studying the Transcription Factor Nuclear Factor Kappa B (NF-κB) in the Central Nervous System

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1335
Author(s):  
Marina Mostafizar ◽  
Claudia Cortes-Pérez ◽  
Wanda Snow ◽  
Jelena Djordjevic ◽  
Aida Adlimoghaddam ◽  
...  

The transcription factor nuclear factor kappa B (NF-κB) is highly expressed in almost all types of cells. NF-κB is involved in many complex biological processes, in particular in immunity. The activation of the NF-κB signaling pathways is also associated with cancer, diabetes, neurological disorders and even memory. Hence, NF-κB is a central factor for understanding not only fundamental biological presence but also pathogenesis, and has been the subject of intense study in these contexts. Under healthy physiological conditions, the NF-κB pathway promotes synapse growth and synaptic plasticity in neurons, while in glia, NF-κB signaling can promote pro-inflammatory responses to injury. In addition, NF-κB promotes the maintenance and maturation of B cells regulating gene expression in a majority of diverse signaling pathways. Given this, the protein plays a predominant role in activating the mammalian immune system, where NF-κB-regulated gene expression targets processes of inflammation and host defense. Thus, an understanding of the methodological issues around its detection for localization, quantification, and mechanistic insights should have a broad interest across the molecular neuroscience community. In this review, we summarize the available methods for the proper detection and analysis of NF-κB among various brain tissues, cell types, and subcellular compartments, using both qualitative and quantitative methods. We also summarize the flexibility and performance of these experimental methods for the detection of the protein, accurate quantification in different samples, and the experimental challenges in this regard, as well as suggestions to overcome common challenges.

Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 506 ◽  
Author(s):  
Hyeon Choi ◽  
Gyeong-Ji Kim ◽  
Han-Seok Yoo ◽  
Da Song ◽  
Kang-Hyun Chung ◽  
...  

This study evaluated the effects of vitamin C on osteogenic differentiation and osteoclast formation, and the effects of vitamin C concentration on bone microstructure in ovariectomized (OVX) Wistar rats. Micro-computed tomography analysis revealed the recovery of bone mineral density and bone separation in OVX rats treated with vitamin C. Histomorphometrical analysis revealed improvements in the number of osteoblasts, osteoclasts, and osteocytes; the osteoblast and osteoclast surface per bone surface; and bone volume in vitamin C-treated OVX rats. The vitamin C-treated group additionally displayed an increase in the expression of osteoblast differentiation genes, including bone morphogenetic protein-2, small mothers against decapentaplegic 1/5/8, runt-related transcription factor 2, osteocalcin, and type I collagen. Vitamin C reduced the expression of osteoclast differentiation genes, such as receptor activator of nuclear factor kappa-B, receptor activator of nuclear factor kappa-B ligand, tartrate-resistant acid phosphatase, and cathepsin K. This study is the first to show that vitamin C can inhibit osteoporosis by promoting osteoblast formation and blocking osteoclastogenesis through the activation of wingless-type MMTV integration site family/β-catenin/activating transcription factor 4 signaling, which is achieved through the serine/threonine kinase and mitogen-activated protein kinase signaling pathways. Therefore, our results suggest that vitamin C improves bone regeneration.


2007 ◽  
Vol 19 (2) ◽  
pp. 154-161 ◽  
Author(s):  
R.O. Escárcega ◽  
S. Fuentes-Alexandro ◽  
M. García-Carrasco ◽  
A. Gatica ◽  
A. Zamora

Sign in / Sign up

Export Citation Format

Share Document