scholarly journals Modeling biofilms with dual extracellular electron transfer mechanisms

2013 ◽  
Vol 15 (44) ◽  
pp. 19262 ◽  
Author(s):  
Ryan Renslow ◽  
Jerome Babauta ◽  
Andrew Kuprat ◽  
Jim Schenk ◽  
Cornelius Ivory ◽  
...  
2014 ◽  
Vol 50 (60) ◽  
pp. 8223-8226 ◽  
Author(s):  
Victor Bochuan Wang ◽  
Natalia Yantara ◽  
Teck Ming Koh ◽  
Staffan Kjelleberg ◽  
Qichun Zhang ◽  
...  

Conjugated oligoelectrolytes integrated in Escherichia coli have been proposed to induce release of electroactive cytosolic components, which contributes to extracellular electron transfer.


2016 ◽  
Vol 14 (10) ◽  
pp. 651-662 ◽  
Author(s):  
Liang Shi ◽  
Hailiang Dong ◽  
Gemma Reguera ◽  
Haluk Beyenal ◽  
Anhuai Lu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Heyang Yuan ◽  
Xuehao Wang ◽  
Tzu-Yu Lin ◽  
Jinha Kim ◽  
Wen-Tso Liu

AbstractInterspecies hydrogen transfer (IHT) and direct interspecies electron transfer (DIET) are two syntrophy models for methanogenesis. Their relative importance in methanogenic environments is still unclear. Our recent discovery of a novel species Candidatus Geobacter eutrophica with the genetic potential of IHT and DIET may serve as a model species to address this knowledge gap. To experimentally demonstrate its DIET ability, we performed electrochemical enrichment of Ca. G. eutrophica-dominating communities under 0 and 0.4 V vs. Ag/AgCl based on the presumption that DIET and extracellular electron transfer (EET) share similar metabolic pathways. After three batches of enrichment, Geobacter OTU650, which was phylogenetically close to Ca. G. eutrophica, was outcompeted in the control but remained abundant and active under electrochemical stimulation, indicating Ca. G. eutrophica’s EET ability. The high-quality draft genome further showed high phylogenomic similarity with Ca. G. eutrophica, and the genes encoding outer membrane cytochromes and enzymes for hydrogen metabolism were actively expressed. A Bayesian network was trained with the genes encoding enzymes for alcohol metabolism, hydrogen metabolism, EET, and methanogenesis from dominant fermentative bacteria, Geobacter, and Methanobacterium. Methane production could not be accurately predicted when the genes for IHT were in silico knocked out, inferring its more important role in methanogenesis. The genomics-enabled machine learning modeling approach can provide predictive insights into the importance of IHT and DIET.


Nanoscale ◽  
2021 ◽  
Author(s):  
Zhaodong Li ◽  
Wei Xiong ◽  
Bertrand J. Tremolet de Villers ◽  
Chao Wu ◽  
Ji Hao ◽  
...  

Studies of extracellular electron transfer mechanisms across the bacterium/material interface in a model biocathode.


Sign in / Sign up

Export Citation Format

Share Document