Solvothermal synthesis of orthorhombic Sb2WO6 hierarchical structures and their visible-light-driven photocatalytic activity

2014 ◽  
Vol 43 (22) ◽  
pp. 8439-8445 ◽  
Author(s):  
Sheng-Peng Hu ◽  
Cheng-Yan Xu ◽  
Fei-Xiang Ma ◽  
Lei Cao ◽  
Liang Zhen

Doughnut-like, concave hierarchical structures of orthorhombic Sb2WO6 were firstly prepared and were found to exhibit excellent visible-light-driven photocatalytic performance.

RSC Advances ◽  
2016 ◽  
Vol 6 (95) ◽  
pp. 92560-92568 ◽  
Author(s):  
Xin-Hua Huang ◽  
Lei Zhang ◽  
Jian Song ◽  
Xiao-Feng Cao ◽  
Yan-Chuan Guo

Novel nanoparticle-assembled Bi12GeO20 hierarchical structures with excellent UV-visible light driven photocatalytic performance have been successfully prepared via a facile hydrothermal route.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 437 ◽  
Author(s):  
Zhiming Sun ◽  
Fang Yuan ◽  
Xue Li ◽  
Chunquan Li ◽  
Jie Xu ◽  
...  

A novel kind of cyanuric-acid-modified graphitic carbon nitride (g-C3N4)/kaolinite (m-CN/KA) composite with enhanced visible light-driven photocatalytic performance was fabricated through a facile two-step process. Rhodamine B (RhB) was taken as the target pollutant to study the photocatalytic performance of the synthesized catalysts. It is indicated that the cyanuric acid modification significantly enhanced photocatalytic activity under visible light illumination in comparison with the other reference samples. The apparent rate constant of m-CN/KA is almost 1.9 times and 4.0 times those of g-C3N4/kaolinite and bare g-C3N4, respectively. The superior photocatalytic performance of m-CN/KA could be ascribed, not only to the generation of abundant pore structure and reactive sites, but also to the efficient separation of the photogenerated electron-hole pairs. Furthermore, the possible photocatalytic degradation mechanism of m-CN/KA was also presented in this paper. It could be anticipated that this novel and efficient, metal-free, mineral-based photocatalytic composite has great application prospects in organic pollutant degradation.


2019 ◽  
Vol 43 (48) ◽  
pp. 19172-19179
Author(s):  
Hong-ji Ren ◽  
Yu-bin Tang ◽  
Wei-long Shi ◽  
Fang-yan Chen ◽  
Yu-song Xu

The red mud/graphene oxide composite photocatalysts with enhanced photocatalytic activity were prepared through a simple ultrasonic mixing method.


2016 ◽  
Vol 45 (41) ◽  
pp. 16290-16297 ◽  
Author(s):  
Xiaodan Cui ◽  
Wangwang Xu ◽  
Zhiqiang Xie ◽  
James A. Dorman ◽  
Maria Teresa Gutierrez-Wing ◽  
...  

An optimal amount of Ag doping can effectively increase the photocatalytic performance of SnS2.


2014 ◽  
Vol 2 (15) ◽  
pp. 5315-5322 ◽  
Author(s):  
Lan Ching Sim ◽  
Kah Hon Leong ◽  
Shaliza Ibrahim ◽  
Pichiah Saravanan

GO–Ag–TNTs, a ternary composite was synthesized. Both Ag and GO well contributed to enhance the photocatalytic activity in the visible region.


2021 ◽  
Author(s):  
Rui Zhang ◽  
ziyin chen ◽  
Chen Zhao ◽  
Kunlin Zeng ◽  
Lu Cai ◽  
...  

Abstract A novel binary BiSI/Ag2CO3 photocatalyst with excellent visible light-driven photocatalytic performance was prepared. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) and electrochemical impedance spectroscopy (EIS). The photocatalytic activity of the samples were evaluated by photocatalytic degradation of rhodamine B(RhB) under the irradiation of visible light. The results showed that the BiSI improves the photocatalytic activity of BiSI/Ag2CO3. Moreover, when the mass ratio of BiSI in BiSI/Ag2CO3 composites was 40%, the as-prepared BiSI/Ag2CO3 composite exhibited the best photocatalytic activity for degrading RhB. Finally, the possible mechanism for photodegradation over the BiSI/Ag2CO3 composites is also proposed.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 344 ◽  
Author(s):  
Xiong Sun ◽  
Hui-Jun Li ◽  
Nanquan Ou ◽  
Bowen Lyu ◽  
Bojie Gui ◽  
...  

Nitrogen doped graphene quantum dots (NGQDs) were successfully prepared via a hydrothermal method using citric acid and urea as the carbon and nitrogen precursors, respectively. Due to different post-treatment processes, the obtained NGQDs with different surface modifications exhibited blue light emission, while their visible-light absorption was obviously different. To further understand the roles of nitrogen dopants and N-containing surface groups of NGQDs in the photocatalytic performance, their corresponding composites with TiO2 were utilized to degrade RhB solutions under visible-light irradiation. A series of characterization and photocatalytic performance tests were carried out, which demonstrated that NGQDs play a significant role in enhancing visible-light driven photocatalytic activity and the carrier separation process. The enhanced photocatalytic activity of the NGQDs/TiO2 composites can possibly be attributed to an enhanced visible light absorption ability, and an improved separation and transfer rate of photogenerated carriers.


2017 ◽  
Vol 46 (45) ◽  
pp. 15727-15735 ◽  
Author(s):  
Mingxuan Sun ◽  
Yuanyuan Kong ◽  
Yalin Fang ◽  
Swati Sood ◽  
Yuan Yao ◽  
...  

Multiphasic TiO2 heterojunctions codoped with N and Ti3+ were fabricated and their enhanced visible light photocatalytic activity for the degradation of methylene blue was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document