scholarly journals Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis

2014 ◽  
Vol 7 (2) ◽  
pp. 682-688 ◽  
Author(s):  
Joel A. Haber ◽  
Yun Cai ◽  
Suho Jung ◽  
Chengxiang Xiang ◽  
Slobodan Mitrovic ◽  
...  

We report a new Ce-rich family of active oxygen evolution reaction (OER) catalysts composed of earth abundant elements, discovered using high-throughput methods.

Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2304 ◽  
Author(s):  
Dongni Zhao ◽  
Yuezhen Lu ◽  
Dongge Ma

The importance of advanced energy-conversion devices such as water electrolysis has manifested dramatically over the past few decades because it is the current mainstay for the generation of green energy. Anodic oxygen evolution reaction (OER) in water splitting is one of the biggest obstacles because of its extremely high kinetic barrier. Conventional OER catalysts are mainly noble-metal oxides represented by IrO2 and RuO2, but these compounds tend to have poor sustainability. The attention on Prussian blue (PB) and its analogs (PBA) in the field of energy conversion systems was concentrated on their open-framework structure, as well as its varied composition comprised of Earth-abundant elements. The unique electronic structure of PBA enables its promising catalytic potential, and it can also be converted into many other talented compounds or structures as a precursor. This undoubtedly provides a new approach for the design of green OER catalysts. This article reviews the recent progress of the application of PBA and its derivatives in OER based on in-depth studies of characterization techniques. The structural design, synthetic strategy, and enhanced electrochemical properties are summarized to provide an outlook for its application in the field of OER. Moreover, due to the similarity of the reaction process of photo-driven electrolysis of water and the former one, the application of PBA in photoelectrolysis is also discussed.


2016 ◽  
Vol 4 (1) ◽  
pp. 167-172 ◽  
Author(s):  
Xiangye Liu ◽  
Xin Wang ◽  
Xiaotao Yuan ◽  
Wujie Dong ◽  
Fuqiang Huang

Earth-abundant and highly efficient electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are desired for water-splitting to produce hydrogen.


2020 ◽  
Author(s):  
Ioannis Spanos ◽  
Justus Masa ◽  
Aleksandar Zeradjanin ◽  
Robert Schlögl

AbstractThere is an ongoing debate on elucidating the actual role of Fe impurities in alkaline water electrolysis, acting either as reactivity mediators or as co-catalysts through synergistic interaction with the main catalyst material. This perspective summarizes the most prominent oxygen evolution reaction (OER) mechanisms mostly for Ni-based oxides as model transition metal catalysts and highlights the effect of Fe incorporation on the catalyst surface in the form of impurities originating from the electrolyte or co-precipitated in the catalyst lattice, in modulating the OER reaction kinetics, mechanism and stability. Graphic Abstract


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jeremy L. Hitt ◽  
Yuguang C. Li ◽  
Songsheng Tao ◽  
Zhifei Yan ◽  
Yue Gao ◽  
...  

AbstractIn the problem of electrochemical CO2 reduction, the discovery of earth-abundant, efficient, and selective catalysts is essential to enabling technology that can contribute to a carbon-neutral energy cycle. In this study, we adapt an optical high throughput screening method to study multi-metallic catalysts for CO2 electroreduction. We demonstrate the utility of the method by constructing catalytic activity maps of different alloyed elements and use X-ray scattering analysis by the atomic pair distribution function (PDF) method to gain insight into the structures of the most active compositions. Among combinations of four elements (Au, Ag, Cu, Zn), Au6Ag2Cu2 and Au4Zn3Cu3 were identified as the most active compositions in their respective ternaries. These ternary electrocatalysts were more active than any binary combination, and a ca. 5-fold increase in current density at potentials of −0.4 to −0.8 V vs. RHE was obtained for the best ternary catalysts relative to Au prepared by the same method. Tafel plots of electrochemical data for CO2 reduction and hydrogen evolution indicate that the ternary catalysts, despite their higher surface area, are poorer catalysts for the hydrogen evolution reaction than pure Au. This results in high Faradaic efficiency for CO2 reduction to CO.


Author(s):  
Xuejun Zhai ◽  
Qingping Yu ◽  
Guishan Liu ◽  
Junlu Bi ◽  
Yu Zhang ◽  
...  

Hydrogen evolution reaction (HER) based on water electrolysis is promising for renewable hydrogen production. Limited by sluggish anodic oxygen evolution reaction (OER), rational fabrication of efficient catalyst for HER coupled...


Sign in / Sign up

Export Citation Format

Share Document