Molecular docking and molecular dynamics studies on β-lactamases and penicillin binding proteins

2014 ◽  
Vol 10 (4) ◽  
pp. 891-900 ◽  
Author(s):  
K. M. Kumar ◽  
Anand Anbarasu ◽  
Sudha Ramaiah

Molecular docking analysis of β-lactam antibiotics was performed with PBP2a, PBP2b, PBP2x and SHV-1 proteins, and the best interaction is observed between Ceftobiprole and the PBP2x complex; furthermore the stability of the complex is confirmed using simulation studies; our results show that the Ceftobiprole–PBP2x complex shows high stability as evident by RMSD,Rgand H-bonds.

Author(s):  
Krzysztof Marciniec ◽  
Artur Beberok ◽  
Stanisław Boryczka ◽  
Dorota Wrześniok

Abstract Background The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified at the end of 2019. Despite growing understanding of SARS-CoV-2 in virology as well as many molecular studies, except remdesivir, no specific anti-SARS-CoV-2 drug has been officially approved. Methods In the present study molecular docking technique was applied to test binding affinity of ciprofloxacin and levofloxacin—two commercially available fluoroquinolones, to SARS-CoV-2 S-, E- and TMPRSS2 proteins, RNA-dependent RNA polymerase and papain-like protease (PLPRO). Chloroquine and dexamethasone were used as reference positive controls. Results When analyzing the molecular docking data it was noticed that ciprofloxacin and levofloxacin possess lower binding energy with S protein as compared to the references. In the case of TMPRSS2 protein and PLPRO protease the best docked ligand was levofloxacin and in the case of E proteins and RNA-dependent RNA polymerase the best docked ligands were levofloxacin and dexamethasone. Moreover, a molecular dynamics study also reveals that ciprofloxacin and levofloxacin form a stable complex with E- and TMPRSS2 proteins, RNA polymerase and papain-like protease (PLPRO). Conclusions The revealed data indicate that ciprofloxacin and levofloxacin could interact and potentially inhibit crucial SARS-CoV-2 proteins.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252571
Author(s):  
Ömür Baysal ◽  
Naeem Abdul Ghafoor ◽  
Ragıp Soner Silme ◽  
Alexander N. Ignatov ◽  
Volha Kniazeva

The causative agent of the pandemic identified as SARS-CoV-2 leads to a severe respiratory illness similar to SARS and MERS with fever, cough, and shortness of breath symptoms and severe cases that can often be fatal. In our study, we report our findings based on molecular docking analysis which could be the new effective way for controlling the SARS-CoV-2 virus and additionally, another manipulative possibilities involving the mimicking of immune system as occurred during the bacterial cell recognition system. For this purpose, we performed molecular docking using computational biology techniques on several SARS-CoV-2 proteins that are responsible for its pathogenicity against N-acetyl-D-glucosamine. A similar molecular dynamics analysis has been carried out on both SARS-CoV-2 and anti-Staphylococcus aureus neutralizing antibodies to establish the potential of N-acetyl-D-glucosamine which likely induces the immune response against the virus. The results of molecular dynamic analysis have confirmed that SARS-CoV-2 spike receptor-binding domain (PDB: 6M0J), RNA-binding domain of nucleocapsid phosphoprotein (PDB: 6WKP), refusion SARS-CoV-2 S ectodomain trimer (PDB: 6X79), and main protease 3clpro at room temperature (PDB: 7JVZ) could bind with N-acetyl-D-glucosamine that these proteins play an important role in SARS-CoV-2’s infection and evade the immune system. Moreover, our molecular docking analysis has supported a strong protein-ligand interaction of N-acetyl-D-glucosamine with these selected proteins. Furthermore, computational analysis against the D614G mutant of the virus has shown that N-acetyl-D-glucosamine affinity and its binding potential were not affected by the mutations occurring in the virus’ receptor binding domain. The analysis on the affinity of N-acetyl-D-glucosamine towards human antibodies has shown that it could potentially bind to both SARS-CoV-2 proteins and antibodies based on our predictive modelling work. Our results confirmed that N-acetyl-D-glucosamine holds the potential to inhibit several SARS-CoV-2 proteins as well as induce an immune response against the virus in the host.


Author(s):  
Salam Pradeep Singh ◽  
Iftikar Hussain ◽  
Bolin Kumar Konwar ◽  
Ramesh Chandra Deka ◽  
Chingakham Brajakishor Singh

Aim and Objective: To evaluate a set of seventy phytochemicals for their potential ability to bind the inhibitor of nuclear factor kappaB kinase beta (IKK-β) which is a prime target for cancer and inflammatory diseases. Materials and Methods: Seventy phytochemicals were screened against IKK-β enzyme using DFT-based molecular docking technique and the top docking hits were carried forward for molecular dynamics (MD) simulation protocols. The adme-toxicity analysis was also carried out for the top docking hits. Results: Sesamin, matairesinol and resveratrol were found to be the top docking hits with a total score of -413 kJ/mol, -398.11 kJ/mol and 266.73 kJ/mol respectively. Glu100 and Gly102 were found to be the most common interacting residues. The result from MD simulation observed a stable trajectory with a binding free energy of -107.62 kJ/mol for matairesinol, -120.37 kJ/mol for sesamin and -40.56 kJ/mol for resveratrol. The DFT calculation revealed the stability of the compounds. The ADME-Toxicity prediction observed that these compounds fall within the permissible area of Boiled-Egg and it does not violate any rule for pharmacological criteria, drug-likeness etc. Conclusion: The study interprets that dietary phytochemicals are potent inhibitors of IKK-β enzyme with favourable binding affinity and less toxic effects. In fact, there is a gradual rise in the use of plant-derived molecules because of its lesser side effects compared to chemotherapy. The study has also provided an insight by which the phytochemicals inhibited the IKK-β enzyme. The investigation would also provide in understanding the inhibitory mode of certain dietary phytochemicals in treating cancer.


2021 ◽  
Vol 59 (1) ◽  
pp. 943-954
Author(s):  
Perwez Alam ◽  
Rama Tyagi ◽  
Mohammad Abul Farah ◽  
Md. Tabish Rehman ◽  
Afzal Hussain ◽  
...  

2021 ◽  
Vol 36 (1) ◽  
pp. 618-626 ◽  
Author(s):  
Fatema R. Saber ◽  
Rehab M. Ashour ◽  
Ali M. El-Halawany ◽  
Mohamad Fawzi Mahomoodally ◽  
Gunes Ak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document