Nanocomposite coatings with stimuli-responsive catalytic activity

RSC Advances ◽  
2014 ◽  
Vol 4 (34) ◽  
pp. 17579-17586 ◽  
Author(s):  
Meike Koenig ◽  
David Magerl ◽  
Martine Philipp ◽  
Klaus-Jochen Eichhorn ◽  
Martin Müller ◽  
...  

Stimuli-responsive catalytic coatings are fabricated by in situ-synthesis of metallic nanoparticles in binary poly(N-isopropyl acrylamide)–poly(2-vinyl pyridine) brushes.

1996 ◽  
Vol 457 ◽  
Author(s):  
Phillip B. Messersmith ◽  
F. Znidarsich

ABSTRACTStimuli responsive polymeric hydrogel composites were synthesized by room temperature copolymerization of N-isopropyl acrylamide and methylene bisacrylamide (crosslinking monomer) in an aqueous suspension of Na-montmorillonite. Hydrogels containing 3.5 weight % of montmorillonite exhibited a lower critical solution temperature (LCST) similar to unmodified PNIPAM hydrogel (approximately 32°C), and underwent a reversible 60–70% volume shrinkage when heated from ambient temperature to above the LCST. However, hydrogels containing 10 weight% montmorillonite did not exhibit a measurable LCST, and underwent considerably less shrinkage when heated. A solvent exchange reaction was used to replace the water with an acrylic monomer, which was polymerized in-situ to create a delaminated montmorillonite/polymer nanocomposite.


1980 ◽  
Vol 45 (8) ◽  
pp. 2219-2223 ◽  
Author(s):  
Marie Jakoubková ◽  
Martin Čapka

Kinetics of homogenous hydrogenation of 1-heptene catalysed by rhodium(I) complexes prepared in situ from μ,μ'-dichloro-bis(cyclooctenerhodium) and phosphines of the type RP(C6H5)2 (R = -CH3, -(CH2)nSi(CH3)3; n = 1-4) have been studied. The substitution of the ligands by the trimethylsilyl group was found to increase significantly the catalytic activity of the complexes. The results are discussed in relation to the electron density on the phosphorus atom determined by 31P NMR spectroscopy and to its proton acceptor ability determined by IR spectroscopy.


2014 ◽  
Vol 3 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Hannes Alex ◽  
Norbert Steinfeldt ◽  
Klaus Jähnisch ◽  
Matthias Bauer ◽  
Sandra Hübner

AbstractNanoparticles (NP) have specific catalytic properties, which are influenced by parameters like their size, shape, or composition. Bimetallic NPs, composed of two metal elements can show an improved catalytic activity compared to the monometallic NPs. We, herein, report on the selective aerobic oxidation of benzyl alcohol catalyzed by unsupported Pd/Au and Pd NPs at atmospheric pressure. NPs of varying compositions were synthesized and characterized by UV/Vis spectroscopy, transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). The NPs were tested in the model reaction regarding their catalytic activity, stability, and recyclability in batch and continuous procedure. Additionally, in situ extended X-ray absorption fine structure (EXAFS) measurements were performed in order to get insight in the process during NP catalysis.


2015 ◽  
Vol 44 (19) ◽  
pp. 8906-8916 ◽  
Author(s):  
Sankar Das ◽  
Subhra Jana

Halloysite/metal nanocomposites have been synthesized through the immobilization of preformed and in situ synthesized metal nanoparticles over halloysite surfaces, which in turn produce efficient, cost-effective, and environmentally benign heterogeneous catalysts.


2021 ◽  
Vol 64 (2) ◽  
pp. 68-70
Author(s):  
Satyajeet B. Chaudhari ◽  
Bharat H. Patel ◽  
Aadhar A. Mandot

Composite textiles consisting of metallic nanoparticles dispersed in textiles fabric have been prepared by the reduction of metal ion from its salt at room temperature under normal atmospheric conditions. Morphology and structures have been investigated by SEM. Spherical nanoparticles were found to be homogeneously dispersed in/on the polyester (PET) fiber and the particles were elementally analyzed by the XRF technique.


Sign in / Sign up

Export Citation Format

Share Document