Incessant and economical technique for in-situ preparation of metallicnano on/in polyester fabric

2021 ◽  
Vol 64 (2) ◽  
pp. 68-70
Author(s):  
Satyajeet B. Chaudhari ◽  
Bharat H. Patel ◽  
Aadhar A. Mandot

Composite textiles consisting of metallic nanoparticles dispersed in textiles fabric have been prepared by the reduction of metal ion from its salt at room temperature under normal atmospheric conditions. Morphology and structures have been investigated by SEM. Spherical nanoparticles were found to be homogeneously dispersed in/on the polyester (PET) fiber and the particles were elementally analyzed by the XRF technique.

1991 ◽  
Vol 243 ◽  
Author(s):  
Shigenori Hayashi ◽  
Kenji Iijima ◽  
Takashi Hirao

AbstractThin film process for Pb-based perovskite ferroelectrics has been investigated. Synthesis of epitaxial PLZT, PLT and PZT thin films by rfmagnetron sputtering in our laboratory was reviewed. Basic thin film process and applications were discussed. For further investigation, film preparation process was developed by co-deposition and assisted deposition techniques. The substrate temperature required for in-situ preparation of perovskite could be reduced to room temperature by an ion- and photoassisted co-evaporation technique.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Parasa Hazarika ◽  
Pallab Pahari ◽  
Manash Jyoti Borah ◽  
Dilip Konwar

A novel catalytic system consisting of I2-SDS-H2O has been developed which cleaves 2,3-diaza-1,3-butadiene, 1-aza-1,3-butadienes, oximes and in presence of indoles in the medium uses the corresponding aldehyde products to produce bis(indolyl)alkanes in situ. This one pot simple and mild dual catalytic system works in water at room temperature under neutral conditions.


1998 ◽  
Vol 120 (19) ◽  
pp. 4850-4860 ◽  
Author(s):  
Isabelle Weissbuch ◽  
Paul N. W. Baxter ◽  
Sidney Cohen ◽  
Hagai Cohen ◽  
Kristian Kjaer ◽  
...  

2019 ◽  
Vol 74 (1) ◽  
pp. 147-152 ◽  
Author(s):  
Laura Ruiz Arana ◽  
Jacob Olchowka ◽  
Huayna Terraschke

AbstractIonic liquids (ILs) offer the remarkable possibility of the direct synthesis of Eu2+-doped nanophosphors in solution, under atmospheric conditions, without the necessity of a high-temperature post-synthetic reduction from its trivalent oxidation state. This work uses for the first time in situ luminescence measurements for monitoring the solvation process of Eu2+ from the solid salt to the IL and its stability against oxidation under atmospheric conditions. Upon the addition of EuBr2 to 1-butyl-3-methyl-imidazolium tetrafluoroborate, the formation of the solvation shell is detected by the shift of the emission band at approximately 24 100 cm−1 assigned to the 5d→4f electronic transitions of Eu2+ within EuBr2 to approximately 22 000 cm−1, assigned to Eu2+ within BminBF4, tracking the time-dependent influence of the Eu2+ coordination environment on the crystal field splitting of its d orbitals. Even though the solubility of EuBr2 was demonstrated to be improved by reducing the concentration and increasing the temperature to 60°C, the performance of reactions at room temperature is recommended for future synthesis of Eu2+ materials in ILs due to the slight oxidation to Eu3+ observed upon heating.


2020 ◽  
Vol 51 (6) ◽  
pp. 2689-2710
Author(s):  
Fabian Imanasa Azof ◽  
Kai Tang ◽  
Jinglin You ◽  
Jafar Safarian

AbstractSynthesis of crystalline slags of 12CaO·7Al2O3 phase from the corresponding melt compositions in different atmospheric conditions and different purities is investigated. Observations using a thermogravimetry coupled with differential thermal analysis showed that the dehydration of a zeolitic 12CaO·7Al2O3 phase occur at 770 °C to 1390 °C before it congruently melts at 1450 °C. The X-ray diffraction pattern of the slag showed that a single 12CaO·7Al2O3 phase is produced from a mixture, which has small SiO2 impurity with a 49:51 mass ratio of CaO to Al2O3. A scanning electron microscope and electron probe micro-analyzer showed that a minor Ca-Al-Si-O-containing phase is in equilibrium with a grain-less 12CaO·7Al2O3 phase. Moreover, 12CaO·7Al2O3 is unstable at room temperature when the high-purity molten slag is solidified under oxidizing conditions contained in an alumina crucible. On the other hand, a high-temperature in-situ Raman spectroscopy of a slag that was made of a higher purity CaO-Al2O3 mixture showed that 5CaO·3Al2O3 phase is an unstable/intermediate phase in the the CaO-Al2O3 system, which is decomposed to 12CaO·7Al2O3 above 1100 °C upon heating in oxidizing conditions. It was found that 5CaO·3Al2O3 is present at room temperature when the 12CaO·7Al2O3 dissociates to a mixture of 5CaO·3Al2O3, 3CaO·Al2O3, and CaO·Al2O3 phases during the cooling of the slag at 1180 °C ± 20 °C in reducing atmosphere. It is proposed that low concentrations of Si stabilize 12CaO·7Al2O3 (mayenite), in which Si is a solid solution in its lattice, which is named Si-mayenite. Regarding the calculated CaO-Al2O3-SiO2 diagram in this study, this phase may contain a maximum of 4.7 wt pct SiO2, which depends on the total SiO2 in the system and the Ca/Al ratio.


2016 ◽  
Vol 75 ◽  
pp. 13-17 ◽  
Author(s):  
Lizhong Liu ◽  
Jinjuan Xue ◽  
Xueying Shan ◽  
Guangyu He ◽  
Xin Wang ◽  
...  

1988 ◽  
Vol 3 (3) ◽  
pp. 538-544 ◽  
Author(s):  
Shigehiko Yamada ◽  
Shiushichi Kimura ◽  
Yasuda Eiichi ◽  
Yasuhiro Tanabe ◽  
Yuuichi Asami

To produce a homogeneous composite of silicon carbide whiskers in a silicon nitride matrix, the whiskers were formed in situ. The resulting bulk density was higher than that obtained by a physical mixing of the components using a dispersion procedure. Bending strength at room temperature of the in situ formed composite was about the same as that for the physically mixed composite when the small amount of carbon remaining in the in situ formed composite was removed.


Author(s):  
César D. Fermin ◽  
Dale Martin

Otoconia of higher vertebrates are interesting biological crystals that display the diffraction patterns of perfect crystals (e.g., calcite for birds and mammal) when intact, but fail to produce a regular crystallographic pattern when fixed. Image processing of the fixed crystal matrix, which resembles the organic templates of teeth and bone, failed to clarify a paradox of biomineralization described by Mann. Recently, we suggested that inner ear otoconia crystals contain growth plates that run in different directions, and that the arrangement of the plates may contribute to the turning angles seen at the hexagonal faces of the crystals.Using image processing algorithms described earlier, and Fourier Transform function (2FFT) of BioScan Optimas®, we evaluated the patterns in the packing of the otoconia fibrils of newly hatched chicks (Gallus domesticus) inner ears. Animals were fixed in situ by perfusion of 1% phosphotungstic acid (PTA) at room temperature through the left ventricle, after intraperitoneal Nembutal (35mg/Kg) deep anesthesia. Negatives were made with a Hitachi H-7100 TEM at 50K-400K magnifications. The negatives were then placed on a light box, where images were filtered and transferred to a 35 mm camera as described.


Author(s):  
C. Jennermann ◽  
S. A. Kliewer ◽  
D. C. Morris

Peroxisome proliferator-activated receptor gamma (PPARg) is a member of the nuclear hormone receptor superfamily and has been shown in vitro to regulate genes involved in lipid metabolism and adipocyte differentiation. By Northern analysis, we and other researchers have shown that expression of this receptor predominates in adipose tissue in adult mice, and appears first in whole-embryo mRNA at 13.5 days postconception. In situ hybridization was used to find out in which developing tissues PPARg is specifically expressed.Digoxigenin-labeled riboprobes were generated using the Genius™ 4 RNA Labeling Kit from Boehringer Mannheim. Full length PPAR gamma, obtained by PCR from mouse liver cDNA, was inserted into pBluescript SK and used as template for the transcription reaction. Probes of average size 200 base pairs were made by partial alkaline hydrolysis of the full length transcripts. The in situ hybridization assays were performed as described previously with some modifications. Frozen sections (10 μm thick) of day 18 mouse embryos were cut, fixed with 4% paraformaldehyde and acetylated with 0.25% acetic anhydride in 1.0M triethanolamine buffer. The sections were incubated for 2 hours at room temperature in pre-hybridization buffer, and were then hybridized with a probe concentration of 200μg per ml at 70° C, overnight in a humidified chamber. Following stringent washes in SSC buffers, the immunological detection steps were performed at room temperature. The alkaline phosphatase labeled, anti-digoxigenin antibody and detection buffers were purchased from Boehringer Mannheim. The sections were treated with a blocking buffer for one hour and incubated with antibody solution at a 1:5000 dilution for 2 hours, both at room temperature. Colored precipitate was formed by exposure to the alkaline phosphatase substrate nitrobluetetrazoliumchloride/ bromo-chloroindlylphosphate.


Sign in / Sign up

Export Citation Format

Share Document