scholarly journals A Master equation for the probability distribution functions of forces in soft particle packings

Soft Matter ◽  
2015 ◽  
Vol 11 (7) ◽  
pp. 1253-1258 ◽  
Author(s):  
Kuniyasu Saitoh ◽  
Vanessa Magnanimo ◽  
Stefan Luding

We study the microscopic response of force-chain networks in jammed soft particles to quasi-static isotropic (de)compressions by molecular dynamics simulations.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Miraslau L. Barabash ◽  
William A. T. Gibby ◽  
Carlo Guardiani ◽  
Alex Smolyanitsky ◽  
Dmitry G. Luchinsky ◽  
...  

AbstractIn order to permeate a nanopore, an ion must overcome a dehydration energy barrier caused by the redistribution of surrounding water molecules. The redistribution is inhomogeneous, anisotropic and strongly position-dependent, resulting in complex patterns that are routinely observed in molecular dynamics simulations. Here, we study the physical origin of these patterns and of how they can be predicted and controlled. We introduce an analytic model able to predict the patterns in a graphene nanopore in terms of experimentally accessible radial distribution functions, giving results that agree well with molecular dynamics simulations. The patterns are attributable to a complex interplay of ionic hydration shells with water layers adjacent to the graphene membrane and with the hydration cloud of the nanopore rim atoms, and we discuss ways of controlling them. Our findings pave the way to designing required transport properties into nanoionic devices by optimising the structure of the hydration patterns.


2005 ◽  
Vol 109 (14) ◽  
pp. 6479-6484 ◽  
Author(s):  
Saravanapriyan Sriraman ◽  
Ioannis G. Kevrekidis ◽  
Gerhard Hummer

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
W. Wongsinlatam ◽  
T. Remsungnen

Nonbonding parameters of AMBER force field have been refined based onab initiobinding energies of CO2–[C7H5N2]−complexes. The energy and geometry scaling factors are obtained to be 1.2 and 0.9 forεandσparameters, respectively. Molecular dynamics simulations of CO2molecules in rigid framework ZIF-11, have then been performed using original AMBER parameters (SIM I) and refined parameters (SIM II), respectively. The site-site radial distribution functions and the molecular distribution plots simulations indicate that all hydrogen atoms are favored binding site of CO2molecules. One slight but notable difference is that CO2molecules are mostly located around and closer to hydrogen atom of imidazolate ring in SIM II than those found in SIM I. The Zn-Zn and Zn-N RDFs in free flexible framework simulation (SIM III) show validity of adapting AMBER bonding parameters. Due to the limitations of computing resources and times in this study, the results of flexible framework simulation using refined nonbonding AMBER parameters (SIM IV) are not much different from those obtained in SIM II.


2003 ◽  
Vol 800 ◽  
Author(s):  
Saman Alavi ◽  
Gustavo F. Velardez ◽  
Donald L. Thompson

ABSTRACTThe structural properties of several nanoparticles of 2,4,6,8,10,12-hexanitrohexaazaiso-wurtzitane, HNIW or CL-20, are studied by using molecular dynamics simulations. The internal structure of the CL-20 molecule is held rigid and the intermolecular interactions in the nanoparticles are taken from a previously developed force field. [Sorescu et al., J. Phys. Chem. B, 102, 948 (1998)] Molecular dynamics simulations of solid-like and annealed nanoparticles with 48 and 88 CL-20 molecules have been carried out in the solid-state range of temperatures from 50 to 500 K. The center-of-mass to center-of-mass radial distribution functions, dipole-dipole correlation function, the orientations of the surface dipoles, and the density of the nanoparticles were calculated at fixed temperatures for the nanoparticles.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 79
Author(s):  
Lars Esser ◽  
Roberto Macchieraldo ◽  
Roman Elfgen ◽  
Melanie Sieland ◽  
Bernd Michael Smarsly ◽  
...  

To gain a deeper understanding of the TiCl4 solvation effects in multi-component ionic liquids, we performed ab initio molecular dynamics simulations of 1-butyl-3-methylimidazolium [C4C1Im]+, tetrafluoroborate [BF4]−, chloride [Cl]− both with and without water and titanium tetrachloride TiCl4. Complex interactions between cations and anions are observed in all investigated systems. By further addition of water and TiCl4 this complex interaction network is extended. Observations of the radial distribution functions and number integrals show that water and TiCl4 not only compete with each other to interact mainly with [Cl]−, which strongly influences the cation-[BF4]− interaction, but also interact with each other, which leads to the fact that in certain systems the cation-anion interaction is enhanced. Further investigations of the Voronoi polyhedra analysis have demonstrated that water has a greater impact on the nanosegregated system than TiCl4 which is also due to the fact of the shear amount of water relative to all other components and its higher mobility compared to TiCl4. Overall, the polar network of the IL mixture collapses by including water and TiCl4. In the case of [Cl]− chloride enters the water continuum, while [BF4]− remains largely unaffected, which deeply affects the interaction of the ionic liquid (IL) network.


Sign in / Sign up

Export Citation Format

Share Document