A bottom-up synthesis of α-Fe2O3 nanoaggregates and their composites with graphene as high performance anodes in lithium-ion batteries

2015 ◽  
Vol 3 (5) ◽  
pp. 2158-2165 ◽  
Author(s):  
Xueying Li ◽  
Yuanyuan Ma ◽  
Lei Qin ◽  
Zhiyun Zhang ◽  
Zhong Zhang ◽  
...  

The composites of graphene and α-Fe2O3 nanoaggregates as the anode of lithium ion battery exhibit stable cyclability and a high specific capacity of 1787.27 mA h g−1 at 0.1 A g−1.

RSC Advances ◽  
2016 ◽  
Vol 6 (109) ◽  
pp. 107768-107775 ◽  
Author(s):  
Yew Von Lim ◽  
Zhi Xiang Huang ◽  
Ye Wang ◽  
Fei Hu Du ◽  
Jun Zhang ◽  
...  

Tungsten disulfide nanoflakes grown on plasma activated three dimensional graphene networks. The work features a simple growth of TMDs-based LIBs anode materials that has excellent rate capability, high specific capacity and long cycling stability.


RSC Advances ◽  
2015 ◽  
Vol 5 (10) ◽  
pp. 7356-7362 ◽  
Author(s):  
Minchan Li ◽  
Wenxi Wang ◽  
Mingyang Yang ◽  
Fucong Lv ◽  
Lujie Cao ◽  
...  

A novel microcuboid-shaped C–Fe3O4 assembly consisting of ultrafine nanoparticles derived from Fe–MOFs exhibits a greatly enhanced performance with high specific capacity, excellent cycling stability and good rate capability as anode materials for lithium ion batteries.


RSC Advances ◽  
2015 ◽  
Vol 5 (25) ◽  
pp. 19241-19247 ◽  
Author(s):  
Lingyun Guo ◽  
Qiang Ru ◽  
Xiong Song ◽  
Shejun Hu ◽  
Yudi Mo

The as-prepared mesoporous ZnCo2O4 microspheres showed a high specific capacity and excellent electrochemical performance when used as an anode material for lithium ion batteries.


2018 ◽  
Vol 913 ◽  
pp. 779-785
Author(s):  
Zhong Yi Chen ◽  
Kun Ma ◽  
De Guo Zhou ◽  
Yan Liu ◽  
Yan Zong Zhang

A novel membrane electrode was fabricated by coating conductive slurry (K/Graphene composites as its important component) on copper foil. The membrane electrode, as anode of lithium ion battery, exhibited excellent columbic efficiency and specific capacity of 831 mAh g-1 after 1000 cycles. The K/Graphene composites presented a multi-layer nanostructure. It provided not only more intercalation space and intercalation sites for Li+ during the Li+ intercalation/extraction, but also alleviated the agglomeration of dispersed nanocrystals, as well as decreased the electrochemical impedance. The results suggest that the membrane electrode holds great potential as an anode material for LIBs.


2015 ◽  
Vol 17 (40) ◽  
pp. 27109-27117 ◽  
Author(s):  
Beibei Wang ◽  
Gang Wang ◽  
Zhengyuan Lv ◽  
Hui Wang

In this article, we demonstrate a simple solvothermal method towards in situ growth of hierarchical CoFe2O4 nanoclusters on graphene aerogels (GAs). The CoFe2O4/GAs electrode exhibits high specific capacity, excellent cycling stability and superior rate capabilities in both half and full cells.


2017 ◽  
Vol 5 (47) ◽  
pp. 24636-24644 ◽  
Author(s):  
Chengyi Lu ◽  
David W. Rooney ◽  
Xiong Jiang ◽  
Wang Sun ◽  
Zhenhua Wang ◽  
...  

Enhancing the cathode capacity of lithium ion batteries (LIBs) has been one strategy to improve the energy density of batteries for electric vehicle applications, because of the limitation of inorganic cathode capacity.


Nanoscale ◽  
2015 ◽  
Vol 7 (1) ◽  
pp. 225-231 ◽  
Author(s):  
Wenpei Kang ◽  
Yongbing Tang ◽  
Wenyue Li ◽  
Xia Yang ◽  
Hongtao Xue ◽  
...  

NiMn2O4/C hierarchical tremella-like nanostructures are facilely prepared and show an ultra-high specific capacity even at high current density as anode materials of lithium ion batteries.


RSC Advances ◽  
2016 ◽  
Vol 6 (74) ◽  
pp. 69882-69888 ◽  
Author(s):  
Hao Wang ◽  
Jian Xie ◽  
Shichao Zhang ◽  
Gaoshao Cao ◽  
Xinbing Zhao

Silicon materials have received extensive research interest due to their high specific capacity of 3579 mA h g−1and appropriate potential of approximately 0.4 Vvs.Li/Li+.


2016 ◽  
Vol 40 (10) ◽  
pp. 8202-8205 ◽  
Author(s):  
Yourong Wang ◽  
Kai Xie ◽  
Xu Guo ◽  
Wei Zhou ◽  
Guangsen Song ◽  
...  

A mesoporous nano-SiO2 anode delivers high specific capacity, good cycling stability and high Coulombic efficiency.


2015 ◽  
Vol 44 (16) ◽  
pp. 7123-7126 ◽  
Author(s):  
Yu Liu ◽  
Wei Wang ◽  
Yulong Ying ◽  
Yewu Wang ◽  
Xinsheng Peng

A novel binder-free layered Ti3C2/CNTs nanocomposite lithium-ion battery anode exhibits a high specific capacity and a long cycle life.


Sign in / Sign up

Export Citation Format

Share Document