Effect of HPHT processing on the structure, and thermoelectric properties of Co4Sb12 co-doped with Te and Sn

2015 ◽  
Vol 3 (8) ◽  
pp. 4637-4641 ◽  
Author(s):  
Hairui Sun ◽  
Xiaopeng Jia ◽  
Le Deng ◽  
Pin Lv ◽  
Xin Guo ◽  
...  

Te–Sn co-doped Co4Sb12 bulk polycrystalline materials Co4Sb11.7−xTexSn0.3 have been prepared using a high pressure and high temperature method and then characterized using X-ray diffraction.

2014 ◽  
Vol 33 (1) ◽  
pp. 59-63
Author(s):  
Song Hao ◽  
Hong An Ma ◽  
Le Deng ◽  
Kai Kai Jie ◽  
Zhe Liu ◽  
...  

AbstractPolycrystalline skutterudite Ba0.4Co4Sb11.7Te0.3 with a bcc crystal structure was prepared by the High-Pressure and High-Temperature (HPHT) method. The study explored a chemical method for introducing Ba atoms into the voids of CoSb3 to optimize the thermoelectric figure of merit ZT in the system of Ba0.4Co4Sb11.7Te0.3. The samples were characterized by X-ray diffraction, electron microprobe analysis, and thermoelectric properties measurement. The electrical resistivity, Seebeck coefficients and thermal conductivities of the samples were measured in the temperature range of 300–743 K. The power factor and the figure of merit, ZT, of the samples all increased with the increasing temperature. A dimensionless thermoelectric figure of merit of 0.87 at 743 K was achieved for n-type Ba0.4Co4Sb11.7Te0.3 at last. The results indicated Ba-filled CoSb3 prepared by HPHT method is an effective method to greatly enhance the thermoelectric properties of skutterudite compounds.


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


2020 ◽  
Vol 75 (6-7) ◽  
pp. 597-603
Author(s):  
Birgit Fuchs ◽  
Hubert Huppertz

AbstractThe non-centrosymmetric scandium borate ScB6O9(OH)3 was obtained through a high-pressure/high-temperature experiment at 6 GPa and 1473 K. Single-crystal X-ray diffraction revealed that the structure is isotypic to InB6O9(OH)3 containing borate triple layers separated by scandium layers. The compound crystallizes in the space group Fdd2 with the lattice parameters a = 38.935(4), b = 4.4136(4), and c = 7.6342(6) Å. Powder X-ray diffraction and vibrational spectroscopy were used to further characterize the compound and verify the proposed structure solution.


2015 ◽  
Vol 70 (3) ◽  
pp. 183-190 ◽  
Author(s):  
Gerhard Sohr ◽  
Nina Ciaghi ◽  
Klaus Wurst ◽  
Hubert Huppertz

AbstractSingle crystals of the hydrous cadmium borate Cd6B22O39·H2O were obtained through a high-pressure/high-temperature experiment at 4.7 GPa and 1000 °C using a Walker-type multianvil apparatus. CdO and partially hydrolyzed B2O3 were used as starting materials. A single crystal X-ray diffraction study has revealed that the structure of Cd6B22O39·H2O is similar to that of the type M6B22O39·H2O (M=Fe, Co). Layers of corner-sharing BO4 groups are interconnected by BO3 groups to form channels containing the metal cations, which are six- and eight-fold coordinated by oxygen atoms. The compound crystallizes in the space group Pnma (no. 62) [R1=0.0379, wR2=0.0552 (all data)] with the unit cell dimensions a=1837.79(5), b=777.92(2), c=819.08(3) pm, and V=1171.00(6) Å3. The IR and Raman spectra reflect the structural characteristics of Cd6B22O39·H2O.


2018 ◽  
Vol 89 (8) ◽  
pp. 1488-1499 ◽  
Author(s):  
Cheng Zhang ◽  
Ling Zhong ◽  
Dingfei Wang ◽  
Fengxiu Zhang ◽  
Guangxian Zhang

Grafting graphene on polyethylene terephthalate (PET) fibers requires a large number of environmentally harmful chemicals. In this study, a facile high-temperature and high-pressure method of inlaying graphene nanoplatelets was applied to fabricate anti-ultraviolet (UV) and anti-static graphene/PET composites. The resulting graphene-inlaid (GI) PET fabric, which showed excellent anti-ultraviolet and anti-static properties, was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform–infrared spectroscopy and X-ray diffraction. Results suggested that graphene had been inlaid into the PET fiber surface, and that the optimal inlaying conditions were as follows: inlaying temperature 200℃, inlaying pressure 15 MPa, and inlaying time 15 s. The UV protection factor of the GI PET fabric under optimal conditions could reach 50+ and was maintained at 50+ after 50 laundering cycles. The peak values of the static voltage and its half-time in the GI PET fabric could be reduced from 500.0 V to 10.0 V and from 7.39 s to 0.53 s, respectively, and the electrical resistivity of the GI PET fabric was 36.04 ± 0.14 kΩ.cm. The breaking strengths of the GI PET fabrics could be retained over 70.0% that of the pure PET fabric. The facile high-temperature and high-pressure inlaying method is an eco-friendly technique that requires very few chemicals, except for ethyl alcohol.


CrystEngComm ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 695-700 ◽  
Author(s):  
Lisha Xue ◽  
Weixia Shen ◽  
Zhuangfei Zhang ◽  
Manjie Shen ◽  
Wenting Ji ◽  
...  

The chemical composition can directly tune the transport properties of Cu2Se liquid-like materials, including the carrier concentration, carrier mobility and superionic feature.


2019 ◽  
Vol 39 (3) ◽  
pp. 499-508 ◽  
Author(s):  
Chikara Shito ◽  
Keitaro Okamoto ◽  
Yuki Sato ◽  
Ryuji Watanabe ◽  
Tomonori Ohashi ◽  
...  

2020 ◽  
Vol 10 (9) ◽  
pp. 3329
Author(s):  
Konstantin G. Mikheev ◽  
Tatyana N. Mogileva ◽  
Arseniy E. Fateev ◽  
Nicholas A. Nunn ◽  
Olga A. Shenderova ◽  
...  

Laser-induced graphitization of 100 nm monocrystals of diamond particles synthesized by high-pressure high-temperature (HP-HT) methods is not typically observed. The current study demonstrates the graphitization of 150 nm HP-HT nanodiamond particles in ca. 20-μm-thick thin films formed on a glass substrate when the intensity of a focused 633 nm He-Ne laser exceeds a threshold of ~ 33 kW/cm2. Graphitization is accompanied by green luminescence. The structure and morphology of the samples were investigated before and after laser excitation while using X-ray diffraction (XRD), Raman spectroscopy, atomic force (AFM), and scanning electron microscopy (SEM). These observations are explained by photoionization of [Ni-N]- and [N]-centers, leading to the excitation of electrons to the conduction band of the HP-HT nanodiamond films and an increase of the local temperature of the sample, causing the transformation of sp3 HP-HT nanodiamonds to sp2-carbon.


Sign in / Sign up

Export Citation Format

Share Document