scholarly journals Surface enhanced Raman spectroscopic direct determination of low molecular weight biothiols in umbilical cord whole blood

The Analyst ◽  
2016 ◽  
Vol 141 (7) ◽  
pp. 2165-2174 ◽  
Author(s):  
Julia Kuligowski ◽  
Marwa R. EL-Zahry ◽  
Ángel Sánchez-Illana ◽  
Guillermo Quintás ◽  
Máximo Vento ◽  
...  

Biothiols are determined in whole blood samples by Surface Enhanced Raman Spectroscopy (SERS).

2018 ◽  
Vol 90 (15) ◽  
pp. 9093-9100 ◽  
Author(s):  
Ángel Sánchez-Illana ◽  
Fritz Mayr ◽  
Daniel Cuesta-García ◽  
José David Piñeiro-Ramos ◽  
Andrés Cantarero ◽  
...  

Author(s):  
Franca Andreolini ◽  
Claudio Borra ◽  
Antonio di Corcia ◽  
Roberto Samperi

Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 78
Author(s):  
Sevasti Karampela ◽  
Jessica Smith ◽  
Irene Panderi

An ever-increasing need exists within the forensic laboratories to develop analytical processes for the qualitative and quantitative determination of a broad spectrum of new psychoactive substances. Phenylethylamine derivatives are among the major classes of psychoactive substances available on the global market and include both amphetamine analogues and synthetic cathinones. In this work, an ultra-high-performance liquid chromatography-positive ion electrospray ionization tandem mass spectrometric method (UHPLC-ESI-MS/MS) has been developed and fully validated for the determination of 19 psychoactive substances, including nine amphetamine-type stimulants and 10 synthetic cathinone derivatives, in premortem and postmortem whole blood. The assay was based on the use of 1 mL premortem or postmortem whole blood, following solid phase extraction prior to the analysis. The separation was achieved on a Poroshell 120 EC-C18 analytical column with a gradient mobile phase of 0.1% formic acid in acetonitrile and 0.1% formic acid in water in 9 min. The dynamic multiple reaction monitoring used in this work allowed for limit of detection (LOD) and lower limit of quantitation (LOQ) values of 0.5 and 2 ng mL−1, respectively, for all analytes both in premortem and postmortem whole blood samples. A quadratic calibration model was used for the 12 quantitative analytes over the concentration range of 20–2000 ng mL−1, and the method was shown to be precise and accurate both in premortem and postmortem whole blood. The method was applied to the analysis of real cases and proved to be a valuable tool in forensic and clinical toxicology.


2021 ◽  
pp. 000370282110329
Author(s):  
Ling Wang ◽  
Mario O. Vendrell-Dones ◽  
Chiara Deriu ◽  
Sevde Doğruer ◽  
Peter de B. Harrington ◽  
...  

Recently there has been upsurge in reports that illicit seizures of cocaine and heroin have been adulterated with fentanyl. Surface-enhanced Raman spectroscopy (SERS) provides a useful alternative to current screening procedures that permits detection of trace levels of fentanyl in mixtures. Samples are solubilized and allowed to interact with aggregated colloidal nanostars to produce a rapid and sensitive assay. In this study, we present the quantitative determination of fentanyl in heroin and cocaine using SERS, using a point-and-shoot handheld Raman system. Our protocol is optimized to detect pure fentanyl down to 0.20 ± 0.06 ng/mL and can also distinguish pure cocaine and heroin at ng/mL levels. Multiplex analysis of mixtures is enabled by combining SERS detection with principal component analysis and super partial least squares regression discriminate analysis (SPLS-DA), which allow for the determination of fentanyl as low as 0.05% in simulated seized heroin and 0.10% in simulated seized cocaine samples.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Mustafa Karapirli ◽  
Murat Kizilgun ◽  
Ozgur Yesilyurt ◽  
Husamettin Gul ◽  
Zeki Ilker Kunak ◽  
...  

Objectives. Cyclosporine A (CyA), tacrolimus (TRL), sirolimus (SIR), and everolimus (RAD) are immunosuppressive drugs frequently used in organ transplantation. Our aim was to confirm a robust sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for determination of CyA, TRL, SIR, and RAD in whole-blood samples.Materials and Methods. We used an integrated online solid-phase extraction-LC-MS/MS system and atmospheric pressure ionization tandem mass spectrometry (API-MS/MS) in the multiple reaction monitoring (MRM) detection mode. CyA, TRL, SIR, and RAD were simultaneously analyzed in whole blood treated with precipitation reagent taken from transplant patients.Results. System performance parameters were suitable for using this method as a high-throughput technique in clinical practice. The high concentration of one analyte in the sample did not affect the concentration of other analytes. Total analytical time was 2.5 min, and retention times of all analytes were shorter than 2 minutes.Conclusion. This LC-MS/MS method can be preferable for therapeutic drug monitoring of these immunosuppressive drugs (CyA, TRL, SRL, and RAD) in whole blood. Sample preparation was too short and simple in this method, and it permits robust, rapid, sensitive, selective, and simultaneous determination of these drugs.


Sign in / Sign up

Export Citation Format

Share Document