whole blood samples
Recently Published Documents


TOTAL DOCUMENTS

605
(FIVE YEARS 135)

H-INDEX

42
(FIVE YEARS 4)

2022 ◽  
Vol 20 (8) ◽  
pp. 3105
Author(s):  
S. A. Romanyuk ◽  
O. S. Popov ◽  
N. N. Sushentseva ◽  
S. V. Apalko ◽  
I. A. Polkovnikova ◽  
...  

Aim. To optimize the technique for the isolation and storage of ribonucleic acid (RNA) from whole blood and leukocyte fraction.Materials and methods. Comparison of isolation quality was carried out for RNA samples obtained from 228 leukocyte samples and 198 whole blood samples. Isolation was performed from fresh and frozen samples using ExtractRNA™ reagent and a MagNA Pure Compact automated system. Various methods of removing erythrocytes (centrifugation and treatment with hemolytic agents from two manufacturers) were tested, as well as freezing with and without preservatives for subsequent RNA isolation.Results. Twenty-one combinations of conditions were tested. The highest quality RNA was isolated by manual extraction using the ExtractRNA™ reagent from a fresh leukocyte fraction, purified by the Amplisens hemolytic agent (successful extraction — 94%, median RIN=8,4); frozen in IntactRNA™, purified by leukocyte fraction centrifugation (successful extraction — 100%, median RIN=8); frozen in ExtractRNA™, purified by leukocyte fraction centrifugation (successful extraction — 100%, median RIN=9,3).Conclusion. RNA can be isolated from frozen blood fractions, which is not inferior in quality to that isolated from fresh samples. Thus, it is not necessary to isolate RNA immediately after the receipt of biological material.


2022 ◽  
Author(s):  
Chace Wilson ◽  
Nicolas Dias ◽  
Stefania Pancini ◽  
Vitor Mercadante ◽  
Fernando Biase

Background: The transcriptome of peripheral white blood cells (PWBCs) contains valuable physiological information, thus making them a prime biological sample for investigating mRNA-based biomarkers. However, prolonged storage of whole blood samples can alter gene transcript abundance in PWBCs, compromising the results of biomarker discovery. Here, we designed an experiment to interrogate the impacts of delayed processing of whole blood samples on gene transcript abundance in PWBCs. We hypothesized that storing blood samples for 24 hours at 4°C would cause RNA degradation resulting in altered transcriptome profiles. Results: We produced RNA-sequencing data for 30 samples collected from five estrus synchronized heifers (Bos taurus). We quantified transcript abundance for 12,414 protein-coding genes in PWBCs. Analysis of parameters of RNA quality revealed no statistically significant differences (P>0.05) between samples collected from the jugular vein and coccygeal vein, as well as among samples processed after one, three, six, or eight hours. However, samples processed after 24 hours of storage had a lower RNA integrity number value (P=0.03) in comparison to those processed after one hour of storage. Next, we analyzed RNA-sequencing data between samples using those processed after one hour of storage as the baseline for comparison. Interestingly, evaluation of 3/5 prime bias revealed no differences between genes with lower transcript abundance in samples stored for 24 hours relative to one hour. In addition, sequencing coverage of transcripts was similar between samples from the 24-hour and one-hour groups. We identified four and 515 genes with differential transcript abundance in samples processed after storage for eight and 24 hours, respectively, relative to samples processed after one hour. Conclusions: The PWBCs respond to prolonged cold storage by increasing genes related to active chromatin compaction which in turn reduces gene transcription. This alteration in transcriptome profiles can impair the accuracy of mRNA-based biomarkers. Therefore, blood samples collected for mRNA-based biomarker discovery should be refrigerated immediately and processed within six hours post sampling.


2022 ◽  
Vol 16 (1) ◽  
pp. e0010020
Author(s):  
Isabel Fourie ◽  
June Williams ◽  
Arshad Ismail ◽  
Petrus Jansen van Vuren ◽  
Anton Stoltz ◽  
...  

Background The Old world Alphavirus, Middelburg virus (MIDV), is not well known and although a few cases associated with animal illness have previously been described from Southern Africa, there has been no investigation into the association of the virus with human illness. The current study aimed to investigate possible association of MIDV infection with febrile or neurological manifestations in hospitalized or symptomatic patients fromGauteng, South Africa. Methods This study is a descriptive retrospective and prospective laboratory based study. Archived cerebrospinal fluid (CSF) samples submitted to the National Health Laboratory Service (NHLS), Tshwane Academic division for viral investigation from public sector hospitals in Gauteng as well as EDTA (ethylenediaminetetraacetic acid) whole blood samples from ad hoc cases of veterinary students, presenting with neurological and febrile illness, were selected and screened for the presence of alphaviruses using real-time reverse transcription(rtRT) PCR.Virus isolations from rtRT-PCR positive samples were conducted in Vero cell culture and used to obtain full genome sequences. Basic descriptive statistical analysis was conducted using EpiInfo. Results MIDV was detected by rtRT-PCR in 3/187 retrospective CSF specimens obtained from the NHLS from hospitalised patients in the Tshwane region of Gauteng and 1/2 EDTA samples submitted in the same year (2017) from ad hoc query arbovirus cases from veterinary students from the Faculty of Veterinary Science University of Pretoria.Full genome sequences were obtained for virus isolates from two cases; one from an EDTA whole blood sample (ad hoc case) and another from a CSF sample (NHLS sample).Two of the four Middelburg virus positive cases,for which clinical information was available, had other comorbidities or infections at the time of infection. Conclusion Detection of MIDV in CSF of patients with neurological manifestations suggests that the virus should be investigated as a human pathogen with the potential of causing or contributing to neurological signs in children and adults.


2021 ◽  
Author(s):  
Irena Voinsky ◽  
Yazeed Zoabi ◽  
Noam Shomron ◽  
Moria Harel ◽  
Hanoch Cassuto ◽  
...  

Abstract Mutations in over 100 genes are implicated in autism spectrum disorder (ASD). DNA mutations and epigenomic modifications also contribute to ASD. Transcriptomics analysis of blood samples may offer clues for pathways dysregulated in ASD. To expand and validate published findings of RNA-sequencing (RNA-seq) studies, we performed RNA-seq of whole blood samples from a discovery cohort of eight children with ASD compared with nine age- and sex-matched neurotypical children. This revealed 10 genes with differential expression. Using real-time PCR, we compared whole blood samples from 35 children with ASD and 21 matched neurotypical children for the 10 dysregulated genes detected by RNA-seq. This revealed higher expression levels of the proinflammatory transcripts BATF2 and FCGR1A, and lower expression levels of the anti-inflammatory transcripts ISG15 and MT2A in the ASD compared to the control group. BATF2 and FCGR1A were recently reported as upregulated in blood samples of Japanese adults with ASD. Coupled with that publication, our findings support involvement of these genes in ASD phenotypes, independent of age and ethnicity. Upregulation of BATF2 and FCGR1A and downregulation of ISG15 and MT2A were reported to reduce cancer risk. Implications of the dysregulated genes for pro-inflammatory phenotypes, immunity, and cancer risk in ASD are discussed.


Author(s):  
Xinggui Yang ◽  
Yue Wang ◽  
Ying Liu ◽  
Junfei Huang ◽  
Qinqin Tan ◽  
...  

Brucella abortus (B. abortus), an important zoonotic pathogen in Brucella spp., is the major causative agent of abortion in cattle (namely, bovine brucellosis). Currently, although the isolation and identification of the Brucella abortus were commonly accepted as the gold standard method, it cannot meet the requirements for early diagnostic strategies. Conventional PCR techniques and immunological tests can realize rapid detection of B. abortus, but the demands for PCR thermal cyclers and/or specific antibodies hinder their application in basic laboratories. Thus, rapid, sensitive, and specific diagnostic strategies are essential to prevent and control the spread of the bovine brucellosis. In this work, a novel detection method for the rapid identification of B. abortus, which uses loop-mediated isothermal amplification (LAMP) combined with a label-based polymer nanoparticles lateral flow immunoassay biosensor (LFIA), was established. One set of specific B. abortus-LAMP primers targeting the BruAb2_0168 gene was designed by the online LAMP primer design tool. The B. abortus-LAMP-LFIA assay was optimized and evaluated using various pathogens and whole blood samples. The optimal amplification temperature and time for B. abortus-LAMP-LFIA were determined to be 65°C and 50 min, respectively. The B. abortus-LAMP-LFIA method limit of detection (LoD) was 100 fg per reaction for pure genomic DNA of B. abortus. Meanwhile, the detection specificity was 100%, and there was no cross-reactivity for other Brucella members and non-Brucella strains. Furthermore, the entire procedure, including the DNA preparation for whole blood samples (30 min), isothermal incubation (50 min), and LFIA detection (2–5 min), can be completed in approximately 85 min. Thus, the B. abortus-LAMP-LFIA assay developed was a simple, rapid, sensitive, and reliable detection technique, which can be used as a screening and/or diagnostic tool for B. abortus in the field and basic laboratories.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuu Oda ◽  
Takashi Ito ◽  
Yoichiro Yamada ◽  
Tadashi Koga ◽  
Tomoka Nagasato ◽  
...  

Abstract Background Rupture of an atherosclerotic plaque and subsequent exposure of the subendothelial prothrombotic matrix to blood cause arterial thrombosis. Circulating platelets play an indispensable role in the growth of arterial thrombi partially owing to their unique ability to adhere to the subendothelial matrix and to aggregate to each other under flow conditions. Recently, the Total Thrombus-formation Analysis System (T-TAS) was developed for ex vivo analysis of the thrombogenic potential of whole blood samples under flow conditions. Despite the potential clinical utility of the T-TAS in assessing the risk for thrombosis and bleeding, reference intervals for T-TAS analysis in healthy individuals have not been determined. Methods In total, 122 whole blood samples were collected from healthy volunteers ranging in age from 25 to 45 years. T-TAS analysis and hematological, physiological, and lifestyle assessments were conducted in these subjects. Whole blood samples anticoagulated with hirudin were perfused into a collagen-coated microchip (PL chip). The time to 10 kPa and the area under the flow pressure curve up to 10 min (AUC10) were analyzed as representative variables for thrombogenic potential. Reference intervals, which were defined as 2.5–97.5 percentiles, were determined. Additionally, univariate and multivariate analyses were performed to identify factors associated with the AUC10 in the T-TAS. Results The time to 10 kPa and the AUC10 widely varied, even in healthy volunteers. The reference intervals were 1.50–4.02 min and 223.4–456.8, respectively, at a shear rate of 1500 s− 1. Univariate and multivariate analyses showed that platelet counts were most significantly associated with the AUC10 of the T-TAS. The presence of one or more cardiovascular risk factors of a high body mass index, a high pulse pressure, high fasting serum glucose levels, high low-density lipoprotein-cholesterol levels, a history of smoking, and no habitual exercise, had the second largest effect on the AUC10 of the T-TAS. Conclusions Healthy volunteers who had any cardiovascular risk factors showed augmented thrombogenicity, even in artificial uniform capillaries, compared with those without any risk factors in the T-TAS.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4153-4153
Author(s):  
Christina Caruso ◽  
Meredith E. Fay ◽  
Sunita I. Park ◽  
Todd A. Sulchek ◽  
Michael D. Graham ◽  
...  

Abstract Background: Iron deficiency anemia (IDA), which affects individuals of all ages worldwide, is an often overlooked and undertreated component of chronic disease, despite data correlating its association with adverse outcomes in patients with cardiovascular disease (von Haehling, Nat Rev Cardiol, 2015). While red blood cells (RBCs) in IDA are known to be smaller and contain less hemoglobin than healthy RBCs, how RBC deformability is altered in IDA remains poorly understood; some ektacytometry studies have observed impaired deformability in iron deficient RBCs (idRBCs), while others described either unchanged or increased deformability (Brandão, Clin Hemorheol Microcirc, 2009). Here we ask: can single cell biophysical techniques definitively determine whether idRBCs are less deformable than healthy RBCs and how heterogenous that phenomena may be? Recent investigations into IDA's role in cardiovascular disease have generally focused on the myocardium and coronary vasculature, yet much regarding other physiologic implications remains unknown, including whether idRBCs cause microvascular obstruction or vasculopathy. To address such questions, we leveraged a suite of microvascular models we developed. Methods: We first coupled our microfluidic capillary model with μEXACT, our customized automated particle tracking program for hematologic cell-based assays, to collect high-throughput velocity tracking of single RBCs from a healthy control and 2 IDA patients (anemic for age, ferritin <10 ng/mL) to create a single cell deformability index (sDI) for each RBC (Fig 1). Next, whole blood samples collected in EDTA tubes from the control and IDA patients were perfused into both straight 100μm wide channels (mimicking large venules) and branching 30μm wide microfluidic devices (mimicking smaller venules) at a constant shear rate for 30 minutes to observe if any occlusions or obvious alterations in flow were observed (Fig 2). Finally, using the straight 100μm channel microfluidic devices, human umbilical vein endothelial cells (HUVECs) were cultured throughout each microchannel and RBCs from a healthy control and 3 IDA patients were perfused in parallel microchannels for 4 hours. The endothelialized models were then fixed, permeabilized, and immunostained with antibodies against VCAM-1 and E-selectin, known markers of endothelial inflammation. Mean fluorescence intensity was measured to quantify endothelial inflammation (Fig 3). Results: sDI distribution histograms were obtained for healthy and IDA patient RBCs. The mean sDIs for IDA patient RBCs were decreased in comparison to the healthy RBCs. Additionally, both IDA patient's RBCs lacked a subpopulation of highly deformable RBCs, likely reticulocytes, seen in the healthy RBCs (Fig 1C). There was no evidence of microchannel occlusion for the healthy control or IDA patient whole blood samples in either the straight 100μm microchannels or branching 30μm microfluidic devices (Fig 2D). Finally, in our endothelialized microfluidic model, endothelium exposed to IDA patient RBCs exhibited increased VCAM-1 and E-selectin expression over endothelium exposed to healthy RBCs (Fig 3B). Conclusions: By utilizing an array of microfluidic models we can develop a more comprehensive understanding of the role idRBCs play systemically on microvasculature. Our combined microfluidic and image analysis system demonstrated decreased deformability in idRBCs and can offer detection of subpopulation differences that cannot be fully characterized with bulk techniques such as ektacytometry. So far, our data demonstrates that while no microvascular occlusion occurs, idRBCs contribute to endothelial inflammation. Additionally, the observation that physical interactions between endothelial cells and idRBCs are sufficient to cause endothelial inflammation warrants further investigation, as generally idRBCs had not been viewed as pro-inflammatory. Ongoing studies will couple unique sDI distribution curves with the degree of endothelial inflammation, as well as elucidate how these changes are associated with the degree of IDA or clinical events such as the initiation of iron supplementation. Utilizing atomic force microscopy to better understand how the idRBC membrane impacts deformability and developing biophysical computer simulations to determine if increased idRBC-endothelium interactions are observed in silico are also planned. Figure 1 Figure 1. Disclosures Lam: Sanguina, Inc.: Current holder of individual stocks in a privately-held company.


Sign in / Sign up

Export Citation Format

Share Document