Purified dispersions of graphene in a nonpolar solvent via solvothermal reduction of graphene oxide

2015 ◽  
Vol 51 (18) ◽  
pp. 3824-3827 ◽  
Author(s):  
Fei Zheng ◽  
Wei-Long Xu ◽  
Han-Dong Jin ◽  
Meng-Qi Zhu ◽  
Wei-Hao Yuan ◽  
...  

It is demonstrated that oxidative debris can be separated and largely removed during the surfactant assisted phase transfer of graphene oxide from a water/ethanol mixture to dichlorobenzene.

2016 ◽  
Vol 52 (56) ◽  
pp. 8659-8662 ◽  
Author(s):  
Liang Huang ◽  
Yujie Han ◽  
Shaojun Dong

Highly-branched mesoporous Au–Pd–Pt trimetallic nanoflowers blooming on rGO are synthesized via a one-pot two surfactant-assisted approach.


2014 ◽  
Vol 49 (16) ◽  
pp. 5667-5675 ◽  
Author(s):  
Xiaosheng Cai ◽  
Qilu Zhang ◽  
Shuojue Wang ◽  
Jing Peng ◽  
Youwei Zhang ◽  
...  

2014 ◽  
Vol 50 (68) ◽  
pp. 9700-9703 ◽  
Author(s):  
Shan Wang ◽  
Haolong Li ◽  
Liying Zhang ◽  
Bao Li ◽  
Xiao Cao ◽  
...  

Surfactant-encapsulated polyoxometalates (SEP) can act as cluster suprasurfactants to transfer reduced graphene oxide (RGO) from water to low polar organic solvents with single-layer RGO dispersion.


Langmuir ◽  
2014 ◽  
Vol 30 (8) ◽  
pp. 2170-2177 ◽  
Author(s):  
Hyeri Kim ◽  
Young Rae Jang ◽  
Jeseung Yoo ◽  
Young-Soo Seo ◽  
Ki-Yeon Kim ◽  
...  

2019 ◽  
Vol 16 (6) ◽  
pp. 401 ◽  
Author(s):  
Melanie Kah ◽  
Divina Navarro ◽  
Rai S. Kookana ◽  
Jason K. Kirby ◽  
Swadeshmukul Santra ◽  
...  

Environmental contextThere are great concerns around current wide usage of copper-based agrochemicals. We compare the fate of nano- and conventional forms of copper, in particular their resistance to wash-off by rain (rainfastness), following their application to citrus leaves. Results showing large differences between the formulations in the amount and forms of copper washed from the leaves provide essential information to optimise agrochemical efficacy while minimising the environmental impact. AbstractThis study compares the rainfastness of nine forms of Cu, including nano and conventional Cu-based fungicide formulations, as well as their salt or bulk equivalents. Rainfastness is the ability to resist wash-off; it is a key property for improving pesticide formulations and for assessing the potential transfer of pesticides to the soil. A new protocol was developed to characterise losses of Cu from treated leaves. It consisted of dipping the leaves in rainwater and then in an acid/ethanol mixture followed by size fractionation. The proportion of Cu lost by wash-off from citrus leaves ranged from <2% (Tribasic, nCuO or Cu(OH)2) up to 93% (CuSO4) of the initial amount of Cu applied. Intermediate Cu losses were observed for formulations with silica (nano)particles (9–14% of applied Cu), Kocide (22%), ChampDP (31%), and a formulation with graphene oxide (47%). Smaller particles generally resulted in less wash-off, possibly due to stronger attachment to the leaf surface, but other factors such as the particle shape and solubility also played an essential role. The retention of nCuO to the leaves was particularly high, and the exact mechanisms involved (e.g. foliar uptake) deserve further work. Most of the Cu was washed off in its ionic form (>74%). Two Cu formulations (one commercial formulation and the formulation with graphene oxide) also showed wash off in significant proportions of Cu (~17%) in the nano-sized fraction. This study provides essential information on the amounts and forms of Cu that may reach the soil after the application of Cu-based agrochemicals. The great diversity in behaviour across the range of formulations considered highlights the need for more systematic research to fully exploit the potential improvements of current agrochemicals through (nano)formulation technologies.


Sign in / Sign up

Export Citation Format

Share Document