Nickel N-heterocyclic carbene-catalyzed cross-coupling reaction of aryl aldehydes with organozinc reagents to produce aryl ketones

2015 ◽  
Vol 5 (9) ◽  
pp. 4341-4345 ◽  
Author(s):  
Cheng Jin ◽  
Lijun Gu ◽  
Minglong Yuan

The transformation of aromatic aldehydes into aryl ketones by nickel-catalyzed cross-coupling has been developed. This transformation represents an efficient and attractive synthetic utilization of organozinc reagents.

2020 ◽  
Author(s):  
Jian Luo ◽  
Bo Hu ◽  
wenda wu ◽  
maowei hu ◽  
Tianbiao Liu

Nickel (Ni) catalyzed carbon-carbon (C−C) cross-coupling has been considerably developed in last decades and has demonstrated unique reactivities compared to palladium. However, existing Ni catalyzed cross-coupling reactions, despite success in organic synthesis, are still subject to the use of air-sensitive nucleophiles (i.e. Grignard and organozinc reagents), or catalysts (i.e. Ni<sup>0</sup> pre-catalysts), significantly limiting their academic and industrial adoption. Herein, we report that, through electrochemical voltammetry screening and optimization, the redox neutral C(sp<sup>2</sup>)‒C(sp<sup>3</sup>) cross-coupling can be accomplished in an undivided cell configuration using bench-stable aryl halide or β-bromostyrene (electrophiles) and benzylic trifluoroborate (nucleophiles) reactants, non-precious, bench stable catalysts consisting of NiCl<sub>2</sub>•glyme pre-catalyst and polypyridine ligands under ambient conditions. The broad reaction scope and good yields of the Ni-catalyzed electrochemical coupling reaction were confirmed by 48 examples of aryl/β-styrenyl chloride/bromide and benzylic trifluoroborates. Its potential applications were demonstrated by late-stage functionalization of pharmaceuticals and natural amino acid modification. Furthermore, this electrochemical C−C cross-coupling reaction was demonstrated at gram-scale in a flow-cell electrolyzer for practical industrial adoption. Finally, an array of chemical and electrochemical studies mechanistically indicates that electrochemical C−C cross-coupling reaction proceeds through an unconventional radical trans-metalation mechanism.


Synthesis ◽  
2020 ◽  
Vol 52 (08) ◽  
pp. 1279-1286
Author(s):  
Kamal K. Rajbongshi ◽  
Srinivas Ambala ◽  
Thavendran Govender ◽  
Hendrik G. Kruger ◽  
Per I. Arvidsson ◽  
...  

An efficient catalyst-free radical cross-coupling reaction between aromatic aldehydes and sulfoximines was developed. The reaction took place in the presence of N-bromosuccinimide as the radical initiator under microwave irradiation to afford the corresponding acylated sulfoximines in moderate to excellent yields (27 examples). This protocol proved to be rapid, easy to handle, and applicable to a broad scope of substrates.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Leitao Huan ◽  
Xiaomin Shu ◽  
Weisai Zu ◽  
De Zhong ◽  
Haohua Huo

AbstractAsymmetric C(sp3)−H functionalization is a persistent challenge in organic synthesis. Here, we report an asymmetric benzylic C−H acylation of alkylarenes employing carboxylic acids as acyl surrogates for the synthesis of α-aryl ketones via nickel and photoredox dual catalysis. This mild yet straightforward protocol transforms a diverse array of feedstock carboxylic acids and simple alkyl benzenes into highly valuable α-aryl ketones with high enantioselectivities. The utility of this method is showcased in the gram-scale synthesis and late-stage modification of medicinally relevant molecules. Mechanistic studies suggest a photocatalytically generated bromine radical can perform benzylic C−H cleavage to activate alkylarenes as nucleophilic coupling partners which can then engage in a nickel-catalyzed asymmetric acyl cross-coupling reaction. This bromine-radical-mediated C−H activation strategy can be also applied to the enantioselective coupling of alkylarenes with chloroformate for the synthesis of chiral α-aryl esters.


2020 ◽  
Author(s):  
Jian Luo ◽  
Bo Hu ◽  
wenda wu ◽  
maowei hu ◽  
Tianbiao Liu

Nickel (Ni) catalyzed carbon-carbon (C−C) cross-coupling has been considerably developed in last decades and has demonstrated unique reactivities compared to palladium. However, existing Ni catalyzed cross-coupling reactions, despite success in organic synthesis, are still subject to the use of air-sensitive nucleophiles (i.e. Grignard and organozinc reagents), or catalysts (i.e. Ni<sup>0</sup> pre-catalysts), significantly limiting their academic and industrial adoption. Herein, we report that, through electrochemical voltammetry screening and optimization, the redox neutral C(sp<sup>2</sup>)‒C(sp<sup>3</sup>) cross-coupling can be accomplished in an undivided cell configuration using bench-stable aryl halide or β-bromostyrene (electrophiles) and benzylic trifluoroborate (nucleophiles) reactants, non-precious, bench stable catalysts consisting of NiCl<sub>2</sub>•glyme pre-catalyst and polypyridine ligands under ambient conditions. The broad reaction scope and good yields of the Ni-catalyzed electrochemical coupling reaction were confirmed by 48 examples of aryl/β-styrenyl chloride/bromide and benzylic trifluoroborates. Its potential applications were demonstrated by late-stage functionalization of pharmaceuticals and natural amino acid modification. Furthermore, this electrochemical C−C cross-coupling reaction was demonstrated at gram-scale in a flow-cell electrolyzer for practical industrial adoption. Finally, an array of chemical and electrochemical studies mechanistically indicates that electrochemical C−C cross-coupling reaction proceeds through an unconventional radical trans-metalation mechanism.


Sign in / Sign up

Export Citation Format

Share Document