High pressure behaviour and elastic properties of a dense inorganic–organic framework

2016 ◽  
Vol 45 (10) ◽  
pp. 4303-4308 ◽  
Author(s):  
Guoqiang Feng ◽  
Xingxing Jiang ◽  
Wenjuan Wei ◽  
Pifu Gong ◽  
Lei Kang ◽  
...  

The hydrostatic behaviour of a cubic dense inorganic–organic framework [DABCOH22+][K(ClO4)3] has been systematically studied via high-pressure synchrotron X-ray powder diffraction. Further first principles calculations of full elastic tensors give full mapping of the Young's moduli, shear moduli and Poisson's ratios of this material.

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1037 ◽  
Author(s):  
Sai Wang ◽  
Changzeng Fan

When processing single crystal X-ray diffraction datasets for twins of Al2Cu sample synthesized by the high-pressure sintering (HPS) method, we have clarified why the crystal structure of Al2Cu was incorrectly solved about a century ago. The structural relationships between all existing Al2Cu phases, including the Owen-, θ-, θ’-, and Ω-Al2Cu phases, were investigated and established based on a proposed pseudo Al2Cu phase. Two potential phases have been built up by adjusting the packing sequences of A/B layers of Al atoms that were inherent in all existing Al2Cu phases. The mechanical, thermal, and dynamical stability of two such novel phases and their electronic properties were investigated by first-principles calculations.


2012 ◽  
Vol 95 (9) ◽  
pp. 2972-2978 ◽  
Author(s):  
Juhyuk Moon ◽  
Seyoon Yoon ◽  
Renata M. Wentzcovitch ◽  
Simon M. Clark ◽  
Paulo J.M. Monteiro

2019 ◽  
Vol 33 (05) ◽  
pp. 1950047
Author(s):  
Ruike Yang ◽  
Bao Chai ◽  
Qun Wei ◽  
Minhua Xue ◽  
Ye Zhou

For novel [Formula: see text]-Si3Sb4, pseudocubic-Si3Sb4, cubic-Si3Sb4 and [Formula: see text]-Si3Sb4, the structural, elastic and electronic properties are investigated using first-principles density functional theory (DFT). The elastic constants and phonon dispersion spectra show that they are mechanically and dynamically stable. The bulk moduli, shear moduli, Young’s moduli, Poisson’s ratios and Pugh ratios for the four compounds have been calculated. The bulk moduli indicate that the bond strength of [Formula: see text]-Si3Sb4 is stronger than others. The values of the Poisson’s ratios and Pugh ratios show that pseudocubic-Si3Sb4 is the stiffest among the four Si3Sb4 compounds. Tetragonal Si3Sb4 are more brittle than cubic Si3Sb4. For the four Si3Sb4 compounds, the elastic anisotropies are analyzed via the anisotropic indexes and the 3D surface constructions. The [Formula: see text]-Si3Sb4 elastic anisotropy is stronger than others and the [Formula: see text]-Si3Sb4 is weaker than others. The calculated band structures show that they exhibit metallic features. The results of their TDOS show that there are many similarities. The peaks of TDOS are derived from the contributions of Si “s”, Si “p”, Sb “s” and Sb “p” states.


2019 ◽  
Vol 57 (5) ◽  
pp. 499-508
Author(s):  
K. D. Litasov ◽  
T. M. Inerbaev ◽  
F. U. Abuova ◽  
A. D. Chanyshev ◽  
A. K. Dauletbekova ◽  
...  

2013 ◽  
Vol 821-822 ◽  
pp. 841-844 ◽  
Author(s):  
Xin Tan ◽  
Zhen Yang Xin ◽  
Xue Jie Liu ◽  
Qing Ge Mu

Structural and elastic properties of AlN are investigated by using First-principles. Both of wurtzite and zinc-blende structures are investigated, respectively. The bulk moduli of the wurtzite structure and zinc blende AlN are 194.2GPa and 187GPa, which obtained by the elastic stiffness constants respectively. Shear moduli are 136GPa and 124GPa. Young's moduli are 331GPa and 305GPa. Poisson's ratio and Pugh criterion suggests that both of them are brittle material. The brittleness of wurtzite AlN is higher than that of zinc-blende AlN. The elastic anisotropy of the bulk moduli and shear moduli were discussed. Three-dimensional anisotropic of the young's modulus were analyzed.


2015 ◽  
Vol 55 (1) ◽  
pp. 227-238 ◽  
Author(s):  
K. K. Mishra ◽  
S. Nagabhusan Achary ◽  
Sharat Chandra ◽  
T. R. Ravindran ◽  
K. K. Pandey ◽  
...  

2018 ◽  
Vol 5 (7) ◽  
pp. 172247
Author(s):  
Bin Wang ◽  
Benyuan Ma ◽  
Wei Song ◽  
Zhe Fu ◽  
Zhansheng Lu

The structural, electronic, magnetic and elastic properties of Mo 2 FeB 2 under high pressure have been investigated with first-principles calculations. Furthermore, the thermal dynamic properties of Mo 2 FeB 2 were also studied with the quasi-harmonic Debye model. The volume of Mo 2 FeB 2 decreases with the increase in pressure. Using the analysis of the density of the states, atom population and Mulliken overlap population, it is observed that as the pressure increases, the B–B bonds are strengthened and the B–Mo covalency decreases. Moreover, for all pressures, Mo 2 FeB 2 is detected in the anti-ferromagnetic phase and the magnetic moments decrease with the increase in pressure. The calculated bulk modulus, shear modulus, Young's modulus, Poisson's ratio and universal anisotropy index all increase with the increase in pressure. From thermal expansion coefficient analysis, it is found that Mo 2 FeB 2 shows good volume invariance under high pressure and temperature. The examination of the dependence of heat capacity on the temperature and pressure shows that heat capacity is more sensitive to temperature than to pressure.


Sign in / Sign up

Export Citation Format

Share Document