Research highlights: nanopore protein detection and analysis

Lab on a Chip ◽  
2015 ◽  
Vol 15 (17) ◽  
pp. 3424-3427 ◽  
Author(s):  
Shiv Acharya ◽  
Shayson Edwards ◽  
Jacob Schmidt

Nanopore detection of specific protein species using carrier DNA – Quantitative protein concentration determination using aptamers – Protein folding studied with unfoldase-coupled nanopores.

Author(s):  
Eszter Csibra ◽  
Guy-Bart Stan

FPCount is a complete protocol for fluorescent protein calibration, consisting of: 1. FP expression/purification using Thermo's HisPur Cobalt Resin. 2. FP concentration determination in a microplate reader. 3. FP fluorescence quantification in a microplate reader. Results can be analysed with the corresponding R package, FPCountR. --- Summary 1. Expression 2. Harvesting/Washing 3. Lysis 4. Fractionation 5. Gel1: Verification of Expression/Fractions 6. Purification 7. Gel2: Verification of Purification 8. Protein concentration and buffer exchange 9. Quantification of FP concentration (part1) 10. Quantification of FP fluorescence 11. Quantification of FP concentration (part2) 12. Protein Storage 13. Calibration of Plate Reader


2008 ◽  
Vol 2 ◽  
pp. PMC.S496 ◽  
Author(s):  
Jonathan W Mueller ◽  
Peter Bayer

The parvulin-type peptidyl-prolyl cis/trans isomerase Pin1 is subject of intense biochemical and clinical research as it seems to be involved in the pathogenesis of certain cancers and protein folding illnesses like Alzheimer's and Parkinson's disease. In addition to Pin1, the human genome only contains a single other parvulin locus encoding two protein species–-Par14 and Par17. Much less is known about these enzymes although their sequences are highly conserved in all metazoans. Parvulin has been proposed to function as Pin1 complementing enzyme in cell cycle regulation and in chromatin remodelling. Pharmaceutical modulation of Par14 might therefore have benefits for certain types of cancer. Moreover, the Par17 protein that has been shown to be confined to anthropoid primate species only might provide a deeper understanding for human-specific brain development. This review aims at stimulating further research on Par14 and Par17 that are overlooked drug targets in the shadow of an overwhelming plethora of Pin1 literature by summarising all current knowledge on these parvulin proteins.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1051 ◽  
Author(s):  
Tiziana Anelli ◽  
Paola Panina-Bordignon

Efficiency and fidelity of protein secretion are achieved thanks to the presence of different steps, located sequentially in time and space along the secretory compartment, controlling protein folding and maturation. After entering into the endoplasmic reticulum (ER), secretory proteins attain their native structure thanks to specific chaperones and enzymes. Only correctly folded molecules are allowed by quality control (QC) mechanisms to leave the ER and proceed to downstream compartments. Proteins that cannot fold properly are instead retained in the ER to be finally destined to proteasomal degradation. Exiting from the ER requires, in most cases, the use of coated vesicles, departing at the ER exit sites, which will fuse with the Golgi compartment, thus releasing their cargoes. Protein accumulation in the ER can be caused by a too stringent QC or by ineffective transport: these situations could be deleterious for the organism, due to the loss of the secreted protein, and to the cell itself, because of abnormal increase of protein concentration in the ER. In both cases, diseases can arise. In this review, we will describe the pathophysiology of protein folding and transport between the ER and the Golgi compartment.


2000 ◽  
Vol 85 (5) ◽  
pp. 1928-1936
Author(s):  
Alison J. Pollard ◽  
Colette Sparey ◽  
Stephen C. Robson ◽  
Adrian R. Krainer ◽  
G. Nicholas Europe-Finner

Abstract Many of the human myometrial proteins associated with uterine quiescence and the switch to coordinated contractions at the onset of labor exist as alternatively spliced isoforms. There is now extensive evidence to indicate that the nuclear concentrations of the trans-acting splicing regulators SF2/ASF and hnRNP A1/A1B are fundamental in regulating the expression of specific protein isoforms derived from alternative splicing of single precursor messenger ribonucleic acid transcripts. The question thus arose as to whether these factors were also involved in regulating the expression of specific myometrial protein species within different uterine regions during human gestation and parturition. SF2/ASF and hnRNP A1/A1B expression was therefore determined in paired upper (corpus) and lower segment myometrial samples taken from individual women at term/during spontaneous labor and compared with nonpregnant control samples using specific monoclonal antibodies. We report that SF2/ASF levels were substantially increased in the lower uterine region, and this was associated with a parallel decrease in levels of hnRNP A1/A1B during gestation. Conversely, the opposite pattern was observed within the upper uterine region during pregnancy, where hnRNP A1/A1B was significantly up-regulated and SF2/ASF levels were much less than those found in the lower uterine segment. The differential expression of hnRNP A1/A1B and SF2/ASF in the upper and lower uterine segments may have a primary role in defining the formation of specific myometrial protein species associated with the known contractile and relaxatory properties of these regions before and during parturition.


RSC Advances ◽  
2015 ◽  
Vol 5 (118) ◽  
pp. 97264-97271 ◽  
Author(s):  
Lei Yang ◽  
Mashooq Khan ◽  
Soo-Young Park

5CBsurfactant droplets were coated with polyelectrolytes for utilization of non-specific protein detection.


Sign in / Sign up

Export Citation Format

Share Document