scholarly journals New insight into high-temperature driven morphology reliant CoMoO4 flexible supercapacitors

2015 ◽  
Vol 39 (8) ◽  
pp. 6108-6116 ◽  
Author(s):  
John Candler ◽  
Tyler Elmore ◽  
Bipin Kumar Gupta ◽  
Lifeng Dong ◽  
Soubantika Palchoudhury ◽  
...  

The next generation of flexible energy storage devices based on CoMoO4 for high-temperature applications were fabricated and tested.

Author(s):  
Mingrui Liu ◽  
Jing Li ◽  
Bing Chi ◽  
Long Zheng ◽  
Yuexing Zhang ◽  
...  

The Li-O2 battery is recognized as one of the most promising energy storage devices for next-generation automotive batteries due to its extremely high theoretical energy density. The design and preparation...


Author(s):  
Longtao Ren ◽  
Qian Wang ◽  
Yajie Li ◽  
Cejun Hu ◽  
Yajun Zhao ◽  
...  

Rechargeable lithium-sulfur (Li–S) batteries are considered one of the most promising next-generation energy storage devices because of their high theoretical energy density. However, the dissolution of lithium polysulfides (LiPSs) in...


2019 ◽  
Vol 7 (2) ◽  
pp. 520-530 ◽  
Author(s):  
Qiulong Li ◽  
Qichong Zhang ◽  
Chenglong Liu ◽  
Juan Sun ◽  
Jiabin Guo ◽  
...  

The fiber-shaped Ni–Fe battery takes advantage of high capacity of hierarchical CoP@Ni(OH)2 NWAs/CNTF core–shell heterostructure and spindle-like α-Fe2O3/CNTF electrodes to yield outstanding electrochemical performance, demonstrating great potential for next-generation portable wearable energy storage devices.


Author(s):  
Mujtaba Ikram ◽  
Sana Arbab ◽  
Bilal Tariq ◽  
Rayha Khan ◽  
Husnain Ahmad ◽  
...  

Ceramic monoliths are applied in many insulating and high resistive engineering applications, but the energy application of ceramics monoliths is still vacant due to less conductivity of monolithic ceramics (for example, in silica- and alumina-based hybrids). This book chapter is a significant contribution in the graphene industry as it explains some novel and modified fabrication techniques for ceramics-graphene hybrids. The improved physical properties may be used to set ceramics-graphene hybrids as a standard for electrical, mechanical, thermal, and energy applications. Further, silica-rGO hybrids may be used as dielectric materials for high-temperature applications due to improved dielectric properties. The fabricated nano-assembly is important for a technological point of view, which may be further applied as electrolytes, catalysts, and conductive, electrochemically active, and dielectric materials for the high-temperature applications. In the end, this chapter discussed porous carbon as a massive source of electrochemical energy for supercapacitors and lithium-ion batteries. Carbon materials which are future of energy storage devices because of their ability to store energy in great capacity, so sustainability through smart materials got a huge potential, so hereby keeping in view all the technological aspects, this chapters sums up important contribution of graphene and porous carbon for applied applications.


2019 ◽  
Vol 7 (27) ◽  
pp. 16339-16346 ◽  
Author(s):  
Xi Wang ◽  
Jiang Xu ◽  
Joselito M. Razal ◽  
Ningyi Yuan ◽  
Xiaoshuang Zhou ◽  
...  

The ability to rapidly charge (and discharge) energy storage devices at extremely low temperature (down to −100 °C) is critical for low-temperature applications such as high altitude exploration and space missions.


2015 ◽  
Vol 3 (37) ◽  
pp. 19144-19147 ◽  
Author(s):  
Wee Siang Vincent Lee ◽  
Erwin Peng ◽  
Dian Chun Choy ◽  
Jun Min Xue

With the advent of next generation wearable technologies, energy storage devices at present not only have to achieve high energy densities, they also need to possess reasonable mechanical robustness.


2020 ◽  
Vol 10 (46) ◽  
pp. 2002815
Author(s):  
Lorenzo Mezzomo ◽  
Chiara Ferrara ◽  
Gabriele Brugnetti ◽  
Daniele Callegari ◽  
Eliana Quartarone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document