21st Century Surface Science - a Handbook
Latest Publications


TOTAL DOCUMENTS

14
(FIVE YEARS 14)

H-INDEX

0
(FIVE YEARS 0)

Published By Intechopen

9781789851991, 9781789852004

Author(s):  
Mujtaba Ikram ◽  
Sana Arbab ◽  
Bilal Tariq ◽  
Rayha Khan ◽  
Husnain Ahmad ◽  
...  

Ceramic monoliths are applied in many insulating and high resistive engineering applications, but the energy application of ceramics monoliths is still vacant due to less conductivity of monolithic ceramics (for example, in silica- and alumina-based hybrids). This book chapter is a significant contribution in the graphene industry as it explains some novel and modified fabrication techniques for ceramics-graphene hybrids. The improved physical properties may be used to set ceramics-graphene hybrids as a standard for electrical, mechanical, thermal, and energy applications. Further, silica-rGO hybrids may be used as dielectric materials for high-temperature applications due to improved dielectric properties. The fabricated nano-assembly is important for a technological point of view, which may be further applied as electrolytes, catalysts, and conductive, electrochemically active, and dielectric materials for the high-temperature applications. In the end, this chapter discussed porous carbon as a massive source of electrochemical energy for supercapacitors and lithium-ion batteries. Carbon materials which are future of energy storage devices because of their ability to store energy in great capacity, so sustainability through smart materials got a huge potential, so hereby keeping in view all the technological aspects, this chapters sums up important contribution of graphene and porous carbon for applied applications.


Author(s):  
Azusa N. Hattori ◽  
Ken Hattori

The realization of three-dimensional (3D)-architected nanostructures, that is, the transformation from novel two-dimensional (2D) film-based devices to 3D complex nanodevices, is of crucial importance with the progress of scaling down devices to nanometer order. However, little attention has been devoted to controlling the atomic ordering and structures of side-surfaces on 3D structures, while techniques for controlling and investigating 2D surfaces, namely, surface science, have been established only for planar 2D surfaces. We have established an original methodology that enables atomic orderings and arrangements of surfaces with arbitrary directions to be observed on 3D figured structures by developing diffraction and microscopy techniques. An original technique, namely, directly and quantitatively viewing the side- and facet-surfaces at the atomic scale by reflection high-energy electron diffraction (RHEED) and low-energy electron diffraction (LEED), can be used to determine process parameters in etching. This chapter introduces methods of evaluation by RHEED and LEED based on a reciprocal space map and methods of creating various atomically flat 111 and {100} side-surfaces of 3D Si nano-architectures and tilted 111 facet-surfaces fabricated by lithography dry and wet etching processes, followed by annealing treatment in vacuum.


Author(s):  
Yeeli Kelvii Kwok

Wettability has been explored for 100 years since it is described by Young’s equation in 1805. It is all known that hydrophilicity means contact angle (θ), θ < 90°; hydrophobicity means contact angle (θ), θ > 90°. The utilization of both hydrophilic surfaces and hydrophobic surfaces has also been achieved in both academic and practical perspectives. In order to understand the wettability of a droplet distributed on the textured surfaces, the relevant models are reviewed along with understanding the formation of contact angle and how it is affected by the roughness of the textured surface aiming to obtain the required surface without considering whether the original material is hydrophilic or hydrophobic.


Author(s):  
Hong Liu

This chapter mainly introduces five basic stages of the film deposition process (vapor adsorption, surface diffusion, reaction between adsorbed species, reaction of film materials to form bonding surface, and nucleation and microstructure formation), analyzes the influence of deposition process parameters on the three basic growth modes of the film, focuses on the relationship between the control parameters of homoepitaxy and heteroepitaxy and the film structure, gives the dynamic characteristics of each growth stage, and examines the factors determining epitaxy film structure, topography, interfacial properties, and stress. It is shown that two-dimensional nucleation is a key to obtain high-quality epitaxial films.


Author(s):  
Shivanjali Saxena ◽  
Rakesh Joshi

Microfluidic devices are based upon the behavior of fluids at the microenvironment level. They offer innumerable applications in the field of science and technology. Their scope is not limited to single field and now have applications in various fields such as biomedical, energy, chemicals and environment as well. Their major advantages are low experiment to cost ratio, and fast response time. Surface wettability is one of the factors contributing to the working of microfluidic devices. Surface wettability measurement is a very critical technique to measure the flow of micro fluids in microfluidic applications. In microfluidic devices the detection of small volume change with change in fluid properties is very minor because of the micrometer range. In order to detect this small change in micrometer range, an in situ wetting measurement is required. In this chapter, we have discussed about types of taxis, microfluidic devices: an application of taxis, microfluidic applications and role of surface wettability in microfluidic devices.


Author(s):  
Rongfu Wen ◽  
Xuehu Ma

Vapor condensation is a ubiquitous phase change phenomenon in nature, as well as widely exploited in various industrial applications such as power generation, water treatment and harvesting, heating and cooling, environmental control, and thermal management of electronics. Condensation performance is highly dependent on the interfacial transport and its enhancement promises considerable savings in energy and resources. Recent advances in micro/nano-fabrication and surface chemistry modification techniques have not only enabled exciting interfacial phenomenon and condensation enhancement but also furthered the fundamental understanding of interfacial wetting and transport. In this chapter, we present an overview of dropwise condensation heat transfer with a focus on improving droplet behaviors through surface design and modification. We briefly summarize the basics of interfacial wetting and droplet dynamics in condensation process, discuss the underlying mechanisms of droplet manipulation for condensation enhancement, and introduce some emerging works to illustrate the power of surface modification. Finally, we conclude this chapter by providing the perspectives for future surface design in the field of condensation enhancement.


Author(s):  
Xoan Xosé Fernández Sánchez-Romate ◽  
Alberto Jiménez Suárez ◽  
Silvia González Prolongo

Smart coatings based on polymer matrix doped with carbon nanoparticles, such as carbon nanotubes or graphene, are being widely studied. The addition of carbon nanofillers into organic coatings usually enhances their performance, increasing their barrier properties, corrosion resistance, hardness, and wear strength. Moreover, the developed composites provide a new generation of protective organic coatings, being able to intelligently respond to damage or external stimuli. Carbon nanoparticles induce new functionalities to polymer coatings, most of them related to the higher electrical conductivity of nanocomposite due to the formation of percolation network. These coatings can be used as strain sensors and gauges, based on the variation of their electrical resistance (structural health monitoring, SHM). In addition, they act as self-heaters by the application of electrical voltage associated to resistive heating by Joule effect. This opens new potential applications, particularly deicing and defogging coatings. Superhydrophobic and self-cleaning coatings are inspired from lotus effect, designing micro- and nanoscaled hierarchical surfaces. Coatings with self-healable polymer matrix are able to repair surface damages. Other relevant smart capabilities of these new coatings are flame retardant, lubricating, stimuli-chromism, and antibacterial activity, among others.


Author(s):  
Aravind Kumar Jagadeesan ◽  
Krithiga Thangavelu ◽  
Venkatesan Dhananjeyan

Recent discoveries of salient carbon nanoforms have paved tremendous interest among research and also toward their discrete applications in scientific fields. Various generation methods for carbon nanotubes (CNTs) involve chemical deposition of vapor, discharge using electric arc and laser ablation mechanism which were driven by functionalization, chemical addition, doping, and filing such that in-depth characterization and manipulation of CNTs were possible. The in-built elasticity, electromechanical, chemical, and optical properties of CNTs have a notable impact on its stability and reactivity. Perhaps, the flexibility along with its determined strength makes them to validate its potential application in diverse fields which enables that these CNTs will definitely procure a prominent role in nanotechnology.


Author(s):  
Imtisal Akhtar ◽  
Malik Abdul Rehman ◽  
Yongho Seo

Three-dimensional integration and stacking of semiconductor devices with high density, its compactness, miniaturization and vertical 3D stacking of nanoscale devices highlighted many challenging problems in the 3D parameter’s such as CD (critical dimension) measurement, depth measurement of via holes, internal morphology of through silicon via (TSV), etc. Current challenge in the high-density 3D semiconductor devices is to measure the depth of through silicon via (TSV) without destructing the sample; TSVs are used in 3D stacking devices to connect the wafers stacked vertically to reduce the wiring delay, power dissipation, and of course, the form factor in the integration system. Special probes and algorithms have been designed to measure 3D parameters like wall roughness, sidewall angle, but these are only limited to deep trench-like structures and cannot be applied to structures like via holes and protrusions. To address these problems, we have proposed an algorithm based nondestructive 3D Atomic Force Microscopy (AFM). Using the high aspect ratio (5, 10, 20, 25) multiwall carbon nanotubes (MWCNTs) AFM probe, the depth of holes up to 1 micron is faithfully obtained. In addition to this, internal topography, side walls, and location of via holes are obtained faithfully. This atomic force microscopy technique enables to 3D scan the features (of any shape) present above and below the surface.


Author(s):  
Jie Zhang ◽  
Xu-Yang Yao ◽  
Bao-Jun Bai ◽  
Wang Ren

The permeability of tight gas reservoirs is usually lower than 1 md. When the external fluids from drilling and completion processes invade such reservoirs, formation damage occurs and causes serious damage to oil and gas production. Fluorocarbon surfactants are most often recommended for removing such damage because they have extremely low surface tension, which means that they can change the reservoir wettability from water wet to gas or oil wet. However, they are not normally applied in the field because they are not cost-effective. Besides, some environmental concerns also restrict their application. In this work, we studied the effects of an oligomeric organosilicon surfactant (OSSF) on wettability modification, surface tension reduction, invasion of different fluids, and fluid flow back. It was found that the amount of spontaneous imbibition and remaining water could be reduced by the surfactant as a result of surface tension reduction and wettability alteration. Compared to the distilled water, the concentration of 0.20 wt% OSSF could decrease water saturation of cores by about 4%. At a flow-back pressure of 0.06 and 0.03 MPa after 20 PV displacement, permeability recovery could increase from 8 to 7–93% and 86%, respectively. We also found that the mechanism of OSSF includes the physical obstruction effect, surface tension reduction of external fluids, and wettability alteration of the reservoir generated. Meanwhile, quantum chemical calculations indicated that adsorbent layer of polydimethylsiloxane could decrease the affinity and adhesion of CH4 and H2O on the pore surface.


Sign in / Sign up

Export Citation Format

Share Document