High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control

Nanoscale ◽  
2015 ◽  
Vol 7 (41) ◽  
pp. 17473-17481 ◽  
Author(s):  
Hyekyoung Choi ◽  
Jung Hoon Song ◽  
Jihoon Jang ◽  
Xuan Dung Mai ◽  
Sungwoo Kim ◽  
...  
2014 ◽  
Vol 665 ◽  
pp. 111-114 ◽  
Author(s):  
Ying Huang ◽  
Xiao Ming Shen ◽  
Xiao Feng Wei

In this paper, InAlN/Si single-heterojunction solar cells have been theoretically simulated based on wxAMPS software. The photovoltaic parameters, such as open circuit voltage, short circuit current, fill factor and conversion efficiency were investigated with changing the indium content and thickness of n-InAlN layer. Simulation results show that the optimum efficiency of InAlN/Si solar cells is 23.1% under AM 1.5G spectral illuminations, with the indium content and thickness of n-InAlN layer are 0.65 and 600nm, respectively. The simulation would contribute to design and fabricate high efficiency InAlN/Si solar cells in experiment.


2017 ◽  
Vol 5 (48) ◽  
pp. 25476-25484 ◽  
Author(s):  
Quan Liu ◽  
Johann Toudert ◽  
Laura Ciammaruchi ◽  
Guillermo Martínez-Denegri ◽  
Jordi Martorell

An optical strategy to design and fabricate ultrathin Ag-based transparent electrodes is developed for high-performance flexible polymer solar cells with robust mechanical stability.


2013 ◽  
Vol 27 (28) ◽  
pp. 1350167 ◽  
Author(s):  
SHUAI ZHOU ◽  
JIU-XUN SUN

As a suitable recombination process, recombination via tail state in organic bulk-heterojunction solar cells (OBHJs) is capable of reproducing both dark and illuminated current–voltage curves. The characteristic parameters of OBHJs based on recombination via tail are governed by transportation and extraction efficiency, and both processes are strongly dependent on the charge carrier mobility. Using a macroscopic simulation, we calculate the mobility dependent power conversion efficiency, open-circuit voltage, short-circuit current and fill factor. The open-circuit voltage is determined by not only carrier density n(p), but also by carrier density gradient. Furthermore, open-circuit voltage is more affected by majority charge carriers and less affected by minority ones.


Nanoscale ◽  
2016 ◽  
Vol 8 (13) ◽  
pp. 7248-7256 ◽  
Author(s):  
A. Varghese ◽  
M. Yakimov ◽  
V. Tokranov ◽  
V. Mitin ◽  
K. Sablon ◽  
...  

The quantum dot solar cell with nanoengineered suppression of photoelectron capture show the same open circuit voltage as the GaAs reference cell together with some improvements in the short circuit current.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Kingsley O. Ukoba ◽  
Freddie L. Inambao ◽  
Andrew C. Eloka-Eboka

The need for affordable, clean, efficient, and sustainable solar cells informed this study. Metal oxide TiO2/NiO heterojunction solar cells were fabricated using the spray pyrolysis technique. The optoelectronic properties of the heterojunction were determined. The fabricated solar cells exhibit a short-circuit current of 16.8 mA, open-circuit voltage of 350 mV, fill factor of 0.39, and conversion efficiency of 2.30% under 100 mW/cm2 illumination. This study will help advance the course for the development of low-cost, environmentally friendly, and sustainable solar cell materials from metal oxides.


2018 ◽  
Vol 9 ◽  
pp. 1802-1808 ◽  
Author(s):  
Katherine Atamanuk ◽  
Justin Luria ◽  
Bryan D Huey

The nanoscale optoelectronic properties of materials can be especially important for polycrystalline photovoltaics including many sensor and solar cell designs. For thin film solar cells such as CdTe, the open-circuit voltage and short-circuit current are especially critical performance indicators, often varying between and even within individual grains. A new method for directly mapping the open-circuit voltage leverages photo-conducting AFM, along with an additional proportional-integral-derivative feedback loop configured to maintain open-circuit conditions while scanning. Alternating with short-circuit current mapping efficiently provides complementary insight into the highly microstructurally sensitive local and ensemble photovoltaic performance. Furthermore, direct open-circuit voltage mapping is compatible with tomographic AFM, which additionally leverages gradual nanoscale milling by the AFM probe essentially for serial sectioning. The two-dimensional and three-dimensional results for CdTe solar cells during in situ illumination reveal local to mesoscale contributions to PV performance based on the order of magnitude variations in photovoltaic properties with distinct grains, at grain boundaries, and for sub-granular planar defects.


2015 ◽  
Vol 2015 ◽  
pp. 1-4
Author(s):  
Xiaojun Zhu ◽  
Xiaoping Zou ◽  
Hongquan Zhou

We use the successive ionic layer adsorption and reaction (SILAR) method for the preparation of quantum dot sensitized solar cells, to improve the performance of solar cells by doping quantum dots. We tested the UV-Vis absorption spectrum of undoped CdS QDSCs and Cu doped CdS QDSCs with different doping ratios. The doping ratios of copper were 1 : 100, 1 : 500, and 1 : 1000, respectively. The experimental results show that, under the same SILAR cycle number, Cu doped CdS quantum dot sensitized solar cells have higher open circuit voltage, short circuit current density photoelectric conversion efficiency than undoped CdS quantum dots sensitized solar cells. Refinement of Cu doping ratio are 1 : 10, 1 : 100, 1 : 200, 1 : 500, and 1 : 1000. When the proportion of Cu and CdS is 1 : 10, all the parameters of the QDSCs reach the minimum value, and, with the decrease of the proportion, the short circuit current density, open circuit voltage, and the photoelectric conversion efficiency are all increased. When proportion is 1 : 500, all parameters reach the maximum values. While with further reduction of the doping ratio of Cu, the parameters of QDSCs have a decline tendency. The results showed that, in a certain range, the lower the doping ratio of Cu, the better the performance of quantum dot sensitized solar cell.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1931
Author(s):  
Hee-Je Kim ◽  
Jin-Ho Bae ◽  
Hyunwoong Seo ◽  
Masaharu Shiratani ◽  
Chandu Venkata Veera Muralee Gopi

Suppressing the charge recombination at the interface of photoanode/electrolyte is the crucial way to improve the quantum dot sensitized solar cells (QDSSCs) performance. In this scenario, ZnS/SiO2 blocking layer was deposited on TiO2/CuInS2 QDs to inhibit the charge recombination at photoanode/electrolyte interface. As a result, the TiO2/CuInS2/ZnS/SiO2 based QDSSCs delivers a power conversion efficiency (η) value of 4.63%, which is much higher than the TiO2/CuInS2 (2.15%) and TiO2/CuInS2/ZnS (3.23%) based QDSSCs. Impedance spectroscopy and open circuit voltage decay analyses indicate that ZnS/SiO2 passivation layer on TiO2/CuInS2 suppress the charge recombination at the interface of photoanode/electrolyte and enhance the electron lifetime.


NANO ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. 1950127 ◽  
Author(s):  
Farhad Jahantigh ◽  
S. M. Bagher Ghorashi

Perovskite solar cells have recently been considered to be an auspicious candidate for the advancement of future photovoltaic research. A power conversion efficiency (PCE) as high as 22% has been reported to be reached, which can be obtained through an inexpensive and high-throughput solution process. Modeling and simulation of these cells can provide deep insights into their fundamental mechanism of performance. In this paper, two different perovskite solar cells are designed by using COMSOL Multiphysics to optimize the thickness of each layer and the overall thickness of the cell. Electric potential, electron and hole concentrations, generation rate, open-circuit voltage, short-circuit current and the output power were calculated. Finally, PCEs of 20.7% and 26.1% were predicted. Afterwards, according to the simulation results, the role of the hole transport layer (HTL) was investigated and the optimum thickness of the perovskite was measured to be 200[Formula: see text]nm for both cells. Therefore, the spin coating settings are selected so that a coating with this thickness for cell 1 is deposited. In order to compare the performance of HTM layer, solar cells with a Spiro-OMeTAD HTM and without the HTM layer in their structure were fabricated. According to the obtained photovoltaic properties, the solar cell made with Spiro-OMeTAD has a more favorable open-circuit voltage ([Formula: see text]), short-circuit current density ([Formula: see text]), fill factor (FF) and PCE compared to the cell without the HTM layer. Also, hysteresis depends strongly on the perovskite grain size, because large average grain size will lead to an increase in the grain’s contact surface area and a decrease in the density of grain boundaries. Finally, according to the results, it was concluded that, in the presence of a hole transport layer, ion transfer was better and ion accumulation was less intense, and therefore, the hysteresis decreases.


2020 ◽  
Vol 8 (19) ◽  
pp. 6513-6520 ◽  
Author(s):  
Xingliang Dong ◽  
Qing Guo ◽  
Qi Liu ◽  
Lei Zhu ◽  
Xia Guo ◽  
...  

A new non-fullerene acceptor named NTO-4F is developed. The optimal PSC based on PM6:NTO-4F achieves a PCE of 11.5% with simultaneously high open-circuit voltage of 0.99 V and short-circuit current density of 19.1 mA cm−2.


Sign in / Sign up

Export Citation Format

Share Document