Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications

Nanoscale ◽  
2016 ◽  
Vol 8 (5) ◽  
pp. 2532-2543 ◽  
Author(s):  
Yan Du ◽  
Shaojun Guo

Chemical doping for fluorescent carbon dots endows acceptable properties for diverse applications.

2020 ◽  
Vol 55 (31) ◽  
pp. 15074-15105
Author(s):  
Melis Ozge Alas ◽  
Fehmi Burak Alkas ◽  
Ayca Aktas Sukuroglu ◽  
Rukan Genc Alturk ◽  
Dilek Battal

MRS Advances ◽  
2016 ◽  
Vol 1 (19) ◽  
pp. 1365-1370 ◽  
Author(s):  
Jingjing Dai ◽  
Michael Zambrana ◽  
Maria Fidalgo

ABSTRACTQuantum dots have been applied in sensing with success, but their use in environmental applications has been questioned due to their heavy metal content. Carbon dots are fluorescent nanoparticles that offer a promising alternative to quantum dots for sensing, due to their low cost, benign fabrication process and negligible environmental impact. Fluorescence sensors are specially suited for detection of nitroaromatic compounds such as 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT), since they can quench the emission of excited species. When combined to Molecularly Imprinted Polymers (MIPs), the sensors become specific to the imprinted target molecules. Amino-functionalized carbon dots (CDs) with high photoluminescence were fabricated. The CDs were characterized with respect to their surface charge, surface chemistry, particle size distribution, and photoluminescence properties (PL). A molecularly imprinted polymer with template of DNT was combined with fluorescent carbon dots via a simple covalent reaction. The ability of aqueous DNT to quench amino CDs fluorescence was tested for concentrations in the range of 1mM to 50 mM. It can be concluded that the amino carbon dots can be used in fluorescent-labeled MIP systems and that they provide a feasible method for the detection of DNT, and potentially other nitroaromatic compounds, in environmental water samples.


2020 ◽  
Vol 16 ◽  
Author(s):  
Pan Zhang ◽  
Shun-Sheng Zhao ◽  
JiaJia Wang ◽  
Xiang Rong Liu

Background: In recent years, environmental pollution and heavy metal pollution caused by rapid urbanization and industrialization have become increasingly serious. Among them, mercury (II) ion (Hg2+) is one of the highly toxic heavy metal ions, and its pollution comes from various natural resources and human activities. Therefore, people attach great importance to the development of analytical methods for effective analysis and sensitive detection of Hg2+ . Objective: Using grape skin as a green and environmental friendly carbon source, to synthesize fluorescent carbon dots, and try to apply them to the detect the concentration of Hg2+ in water. Method: Using "Hutai No. 8" grape skin as carbon source, fluorescent carbon dots were synthesized by one-step hydrothermal method. Structure and fluorescent properties of the carbon dots were tested using TEM, XPS, XRD and other characterization instruments, and their utilization on detection of mercury ions in the actual water samples was explored. Results: The CDs had a particle size of about 4.8 nm and a spherical shape. There are N-H, C-N, C=O and other functional groups on the surface. It was found that Hg2+ has obvious fluorescence quenching effect on CDs, and thus CDs fluorescence quenching method to detect the concentration Hg2+ was established, and the detection limit is 3.7 μM, which could be applied to test the concentration of Hg2+ in water samples. Conclusion: Using grape skin as carbon source, fluorescent carbon dots were successfully synthesized by hydrothermal method. Carbon dots were used to detect mercury ions in water, and a method for detecting mercury ions in actual water samples was established.


Optik ◽  
2021 ◽  
pp. 166449
Author(s):  
Woo Tae Hong ◽  
Jin Young Park ◽  
Jong Won Chung ◽  
Hyun Kyoung Yang ◽  
Jae-Yong Je

2021 ◽  
Author(s):  
Lijuan Liu ◽  
Shengting Zhang ◽  
Xiaodan Zheng ◽  
Hongmei Li ◽  
Qi Chen ◽  
...  

Fusobacterium nucleatum has been employed for the first time to synthesize fluorescent carbon dots which could be applied for the determination of Fe3+ ions in living cells and bioimaging in vitro and in vivo with excellent biocompatibility.


Nano Select ◽  
2021 ◽  
Author(s):  
Jennifer Samphire ◽  
Yuiko Takebayashi ◽  
Stephen A. Hill ◽  
Nicholas Hill ◽  
Kate J. Heesom ◽  
...  

Cellulose ◽  
2021 ◽  
Vol 28 (3) ◽  
pp. 1647-1661
Author(s):  
Shiyu Gao ◽  
Xi Wang ◽  
Nan Xu ◽  
Hailan Lian ◽  
Li Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document