scholarly journals Palladium-catalyzed Br/D exchange of arenes: selective deuterium incorporation with versatile functional group tolerance and high efficiency

2015 ◽  
Vol 2 (9) ◽  
pp. 1071-1075 ◽  
Author(s):  
Hong-Hai Zhang ◽  
Peter V. Bonnesen ◽  
Kunlun Hong

A facile method for introducing deuterium atoms onto an aromatic nucleus via Br/D exchange with high efficiency is disclosed.

2017 ◽  
Vol 13 ◽  
pp. 2610-2616 ◽  
Author(s):  
Tao Fan ◽  
Wei-Dong Meng ◽  
Xingang Zhang

An efficient palladium-catalyzed Heck-type reaction of secondary trifluoromethylated alkyl bromides has been developed. The reaction proceeds under mild reaction conditions with high efficiency and excellent functional group tolerance, even towards formyl and hydroxy groups. Preliminary mechanistic studies reveal that a secondary trifluoromethylated alkyl radical is involved in the reaction.


2021 ◽  
Author(s):  
Mirxan Farizyan ◽  
Arup Mondal ◽  
Sourjya Mal ◽  
Fritz Deufel ◽  
Manuel van Gemmeren

We describe a palladium catalyzed non-directed late-stage deuteration of arenes. Key aspects include the use of D2O as a convenient and easily available deuterium source and the discovery of highly active N,N-bidentate ligands containing an N-acyl sulfonamide group. The reported protocol enables high degrees of deuterium incorporation via a reversible C-H activation step and features an extraordinary functional group tolerance, allowing for the deuteration of complex substrates. This is exemplified by the late-stage isotopic labelling of various pharmaceutically relevant motifs and related scaffolds. We expect that this method, amongst other applications, will prove useful as a tool in drug development processes and for mechanistic studies.


2020 ◽  
Author(s):  
Baojian Xiong ◽  
Yue Li ◽  
Yin Wei ◽  
Søren Kramer ◽  
Zhong Lian

Cross-coupling between substrates that can be easily derived from phenols is highly attractive due to the abundance and low cost of phenols. Here, we report a dual nickel/palladium-catalyzed reductive cross-coupling between aryl tosylates and aryl triflates; both substrates can be accessed in just one step from readily available phenols. The reaction has a broad functional group tolerance and substrate scope (>60 examples). Furthermore, it displays low sensitivity to steric effects demonstrated by the synthesis of a 2,2’disubstituted biaryl and a fully substituted aryl product. The widespread presence of phenols in natural products and pharmaceuticals allow for straightforward late-stage functionalization, illustrated with examples such as Ezetimibe and tyrosine. NMR spectroscopy and DFT calculations indicate that the nickel catalyst is responsible for activating the aryl triflate, while the palladium catalyst preferentially reacts with the aryl tosylate.


Synthesis ◽  
2016 ◽  
Vol 48 (19) ◽  
pp. 3317-3330 ◽  
Author(s):  
Cédric Tresse ◽  
Stéphane Schweizer ◽  
Philippe Bisseret ◽  
Jacques Lalevée ◽  
Gwilherm Evano ◽  
...  

Stereoselective hydrometalation reactions of aryl- and alkyl-substituted trifluoromethylated alkynes with triethylsilane, tributylstannane, and triphenylgermane have been investigated. (E)-α-CF3-Vinylsilanes, -stannanes, and -germanes were obtained under palladium-catalyzed conditions whereas the corresponding (Z)-α-CF3-vinylgermanes were obtained under radical conditions. These reactions proceed in good to excellent yields and possess a broad functional group tolerance. Applications of the (Z)- and (E)-α-CF3-vinylgermanes in palladium-catalyzed cross-coupling reactions with aryl halides having diverse electronic requirements were also investigated. The corresponding (Z)- and (E)-α-CF3-styrenes were obtained as single isomers, thus demonstrating the utility of these versatile synthons for the synthesis of stereodefined trifluoromethylated alkenes.


2016 ◽  
Vol 52 (81) ◽  
pp. 12076-12079 ◽  
Author(s):  
Ming Cui ◽  
Hongxiang Wu ◽  
Junsheng Jian ◽  
Hui Wang ◽  
Chao Liu ◽  
...  

The first palladium-catalyzed Sonogashira coupling of amides has been developed, which proceeds via a selective cleavage of the N-acylsaccharin C–N bond. The protocol is mild, highly functional group tolerant and can be efficiently employed in the synthesis of a broad array of ynones in 48–98% yields under low catalyst loading and Cu-free conditions.


2021 ◽  
Author(s):  
Ru Cui ◽  
Jie Sheng ◽  
Bing-Bing Wu ◽  
Duo-Duo Hu ◽  
Hong-Qian Zheng ◽  
...  

A nickel-catalysed direct terminal monofluormethlyation between alkyl tosylates and a low-cost, industrial raw material bromofluoromethane has been developed. This transformation has demonstrated high efficiency, mild conditions, and good functional-group compatibility....


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xingjie Zhang ◽  
Di Qi ◽  
Chenchen Jiao ◽  
Xiaopan Liu ◽  
Guisheng Zhang

AbstractAlkynes are amongst the most valuable functional groups in organic chemistry and widely used in chemical biology, pharmacy, and materials science. However, the preparation of alkyl-substituted alkynes still remains elusive. Here, we show a nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts. Key to the success of this coupling is the development of an easily accessible and bench-stable amide-type pincer ligand. This ligand allows naturally abundant alkyl amines as alkylating agents in Sonogashira reactions, and produces diverse alkynes in excellent yields under mild conditions. Salient merits of this chemistry include broad substrate scope and functional group tolerance, gram-scale synthesis, one-pot transformation, versatile late-stage derivatizations as well as the use of inexpensive pre-catalyst and readily available substrates. The high efficiency and strong practicability bode well for the widespread applications of this strategy in constructing functional molecules, materials, and fine chemicals.


Sign in / Sign up

Export Citation Format

Share Document