Kinetic study and peak purity determination of bupropion hydrochloride using RRLC/DAD and HPLC/MWD methods: stability study and application in pharmaceutical preparation and in synthetic mixtures with nicotine

RSC Advances ◽  
2015 ◽  
Vol 5 (79) ◽  
pp. 64274-64285 ◽  
Author(s):  
Amira M. El-Kosasy ◽  
Lobna A. Hussein ◽  
Nahla N. Salama ◽  
Nehal G. Sedki

Two validated stability indicating chromatographic methods have been developed and used for the kinetic study and determination of bupropion HCl in presence of its degradation products and nicotine.

2016 ◽  
Vol 9 (1) ◽  
pp. 54
Author(s):  
Megha Sharma ◽  
Neeraj Mahindroo

Objective: The objective of the present study was to develop and validate a novel stability indicating reverse phase-high performance liquid chromatography (RP-HPLC) method for determination of β-acetyldigoxin, an active pharmaceutical ingredient (API).Methods: The chromatographic separation was carried out on Agilent Technologies 1200 series HPLC system equipped with photo diode array detector and C-18 (4.6x250 mm, 5 µ) column. The mobile phase consisted of water: acetonitrile (65:35 v/v), delivered at a flow rate of 1.5 ml/min and eluents were monitored at 225 nm.Results: The retention time of β-acetyldigoxin was 9.2 min. The method was found to be linear (R2= 0.9995) in the range of 31.25-500 µg/ml. The accuracy studies showed the mean percent recovery of 101.02%. LOD and LOQ were observed to be 0.289 µg/ml and 0.965 µg/ml, respectively. The method was found to be robust and system suitability testing was also performed. Forced degradation analysis was carried out under acidic, alkaline, oxidative and photolytic stress conditions. Significant degradation was observed under tested conditions, except for oxidative condition. The method was able to separate all the degradation products within runtime of 20 min and was able to determine β-acetyldigoxin unequivocally in presence of degradation products.Conclusion: The novel, economic, rapid and simple method for analysis of β-acetyldigoxin is reported. The developed method is suitable for routine quality control and its determination as API, and in pharmaceutical formulations and stability study samples.


2019 ◽  
Vol 58 (3) ◽  
pp. 251-261
Author(s):  
Hala E Zaazaa ◽  
Rasha Abdel-Ghany ◽  
M Abdelkawy ◽  
Mahmoud Sayed

Abstract Two robust and selective stability-indicating chromatographic methods were developed and validated for the determination of metolazone in drug substance and pharmaceutical dosage form in the presence of its degradation products. The HPLC method employed a Kromasil C18 (250 × 4.6,5 μm) column and a mobile phase of acetonitrile: 0.2% orthophosphoric acid (32:68 v/v) at a flow rate 2 mL/min and detection at 238 nm. The separation was performed in HPLC isocratic mode. The robustness of the suggested method was assessed using the Plackett–Burman design, parameters affecting system suitability were established and non-significant intervals for the significant parameters were considered. The HPTLC method employed Nano-SIL-20 UV254 HPTLC plates as adsorbent, ethyl acetate: toluene: acetic acid solution (4:4:0.5, v/v/v), as a developing solvent system and densitometric detection at 238 nm. Metolazone was exposed to different stress conditions, including acid and alkaline hydrolysis and oxidative and photolytic degradation. The main degradation products obtained have been characterized and interpreted based on LC-MS. The linearity of the suggested methods was proved in the concentration range of 20–75 μg/mL for the HPLC method and 100–900 ng/spot for the HPTLC method. The suggested methods were validated according to international conference on harmonization guidelines. These methods were successfully dedicated for the estimation of metolazone in drug substance and pharmaceutical dosage form in the presence of its degradation products. The results of the suggested methods were evaluated and compared statistically with results obtained by an official method without finding any significant difference.


2005 ◽  
Vol 88 (4) ◽  
pp. 1142-1147 ◽  
Author(s):  
Tushar N Mehta ◽  
Atul K Patel ◽  
Gopal M Kulkarni ◽  
Gunta Suubbaiah

Abstract A forced degradation study was successfully applied for the development of a stability-indicating assay method for determination of rosuvastatin Ca in the presence of its degradation products. The method was developed and optimized by analyzing the forcefully degraded samples. Degradation of the drug was done at various pH values. Moreover, the drug was degraded under oxidative, photolytic, and thermal stress conditions. Mass balance between assay values of degraded samples and generated impurities was found to be satisfactory. The proposed method was able to resolve all of the possible degradation products formed during the stress study. The developed method was successfully applied for an accelerated stability study of the tablet formulation. The major impurities generated during the accelerated stability study of the tablet formulation were matches with those of the forced degradation study. The developed method was validated for determination of rosuvastatin Ca, and the method was found to be equally applicable to study the impurities formed during routine and forced degradation of rosuvastatin Ca.


2020 ◽  
Vol 103 (4) ◽  
pp. 980-988
Author(s):  
Ghada AbdElHamid Sedik ◽  
Doha Mohamed Naguib ◽  
Fahima Morsy ◽  
Hala Elsayed Zaazaa

Abstract Background Imidocarb dipropionate (IMD) is an immunomodulator agent commonly used for treatment of anaplasmosis in cattle. Objective Thus, two sensitive, specific, and precise stability-indicating chromatographic methods have been developed, optimized, and validated for its determination in presence of its acid, alkaline, and oxidative stressed degradation products. Method The first method is based on separation of IMD and its forced induced degradation products on reversed phase cyano column using isocratic elution system consisted of sodium acetate buffer–methanol–acetonitrile (55: 30:15, v/v/v), pH 4.6 at a flow rate of 1.2 mL/min, and UV detection at 254 nm. The second method utilized TLC combined with densitometric determination of the separated bands at 254 nm. The separation was achieved using silica gel 60 F254 TLC plates with a mixture of ethyl acetate–methanol–ammonia–water (8.5:1:0.5:0.2, v/v/v/v) as a developing system. Results HPLC analysis was applied in range of 0.25–40 µg/mL with LOD of 0.073 µg/mL. While densitometric measurements showed linearity in the range of 0.1–1.8 µg/band with LOD of 0.02 µg/band. Conclusions The suggested methods were validated in compliance with the ICH guidelines and were successfully applied for determination of IMD in its commercial veterinary formulations with good recoveries. Furthermore, the proposed HPLC method was extended to the determination of IMD residues in bovine meat and milk samples Highlights Bovine meat, HPLC, Imidocarb dipropionate, Milk, TLC.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (08) ◽  
pp. 70-76
Author(s):  
Pavani Peddi ◽  
S. L. Tulasi ◽  
N. Usha Rani ◽  
T. Raja Rajeswari

A novel simple, rapid, sensitive and stability-indicating RP-HPLC method was developed and validated for the determination of azelnidipine (ALDP) and its impurities 1 and 2. Resolution of drug, its potential impurities and degradation products were achieved by RP-HPLC on was performed on Prontosil ODS C18 column (250 mm x 4.6 mm, 5µ) using a mobile phase consisting of methanol and 0.1M sodium acetate 40: 60 (v/v) at a flow rate of 1 ml/min and 231 nm of UV detector. Validation of the method was performed along with formulation analysis and forced degradation studies. The calibration curves of ALDP were linear over a concentration range of 50-300 µg/mL. The method was rapid with a retention time of the impurity 2, impurity and ALDP observed at 3.60, 5.15 and 6.90 min, respectively. The method was applied for the impurities determination in drug tablets and for degradation products determination in a stability study of ALDP. The impurity content in the tablets was quantified as 0.1% of total drug. The method can also be used for rapid and accurate quantification of ALDP in its tablets during stability testing.


RSC Advances ◽  
2015 ◽  
Vol 5 (54) ◽  
pp. 43178-43194 ◽  
Author(s):  
Samah S. Abbas ◽  
Mohamed R. Elghobashy ◽  
Lories I. Bebawy ◽  
Rafeek F. Shokry

Stability indicating HPLC and TLC-densitometric methods for the determination of hydroquinone, tretinoin, fluocinolone acetonide, their degradation products and preservatives.


2014 ◽  
Vol 12 (4) ◽  
pp. 470-475 ◽  
Author(s):  
Marta Diego ◽  
Sigrid Mennickent ◽  
Juan Muñoz ◽  
Fernanda Sanhueza ◽  
Ricardo Godoy

AbstractA stability-indicating liquid chromatographic method was developed and validated for simultaneous determination of quinapril and hydrochlorothiazide in drug substances and dosage forms. Chromatographic separation of quinapril, hydrochlorothiazide and its degradation products was achieved on a RP-18 column, using acetonitrile and phosphate buffer (pH 4.6) as mobile phase in a gradient mode and detection at 216 nm. Stress testing was performed under hydrolytic, oxidative, thermal and photolytic conditions. The degradation products were well resolved from main peaks, proving the stability-indicating power of the method. The assay was linear for quinapril and hydrochlorothiazide concentrations of 40–200 µg mL−1 and 25–125 µg mL−1, respectively. The developed method was selective, accurate and precise for quinapril and hydrochlorothiazide determination. This method was used to quantify both drugs in combined commercial tablets. The results showed that the proposed method was found to be suitable for quantitative determination and the stability study of quinapril and hydrochlorothiazide in pharmaceutical samples.


Sign in / Sign up

Export Citation Format

Share Document