Integrating three-dimensional graphene/Fe3O4@C composite and mesoporous Co(OH)2 nanosheets arrays/graphene foam into a superior asymmetric electrochemical capacitor

RSC Advances ◽  
2015 ◽  
Vol 5 (107) ◽  
pp. 88191-88201 ◽  
Author(s):  
Huanwen Wang ◽  
Hui Teng Tan ◽  
Huan Yi ◽  
Yu Zhang ◽  
Guilue Guo ◽  
...  

A novel high-energy asymmetric electrochemical capacitor is fabricated with 3D porous graphene/Fe3O4@C anode and mesoporous Co(OH)2 nanosheets/graphene foam cathode.

Author(s):  
Zhenhuan Zhou ◽  
Yanxia Feng ◽  
Minglang Xu ◽  
Jinxin Wang ◽  
Xinsheng Xu ◽  
...  

NANO ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. 1850136 ◽  
Author(s):  
Jingtong Zhang ◽  
Fuzhen Zhao ◽  
Kun Du ◽  
Yan Zhou

Three-dimensional (3D) mixed phases NiSe nanoparticles growing on the nickel foam were synthesized via a simple one-step hydrothermal method. A series of experiments were carried out to control the morphology by adjusting the amount of selenium in the synthetic reaction. Meanwhile, the as-prepared novel column-acicular structure NiSe exist three advantages including ideal electrical conductivity, high specific capacity and high cycling stability. It delivered a high capacitance of 10.8[Formula: see text]F[Formula: see text]cm[Formula: see text] at a current density[Formula: see text] of 5[Formula: see text]mA[Formula: see text]cm[Formula: see text]. An electrochemical capacitor device operating at 1.6[Formula: see text]V was then constructed using NiSe/NF and activated carbon (AC) as positive and negative electrodes. Moreover, the device showed high energy density of 31[Formula: see text]W[Formula: see text]h[Formula: see text]kg[Formula: see text] at a power density of 0.81[Formula: see text]kW[Formula: see text]kg[Formula: see text], as well as good cycling stability (77% retention after 1500 cycles).


2000 ◽  
Vol 15 (15) ◽  
pp. 2269-2288
Author(s):  
SANATAN DIGAL ◽  
RAJARSHI RAY ◽  
SUPRATIM SENGUPTA ◽  
AJIT M. SRIVASTAVA

We demonstrate the possibility of forming a single, large domain of disoriented chiral condensate (DCC) in a heavy-ion collision. In our scenario, rapid initial heating of the parton system provides a driving force for the chiral field, moving it away from the true vacuum and forcing it to go to the opposite point on the vacuum manifold. This converts the entire hot region into a single DCC domain. Subsequent rolling down of the chiral field to its true vacuum will then lead to emission of a large number of (approximately) coherent pions. The requirement of suppression of thermal fluctuations to maintain the (approximate) coherence of such a large DCC domain, favors three-dimensional expansion of the plasma over the longitudinal expansion even at very early stages of evolution. This also constrains the maximum temperature of the system to lie within a window. We roughly estimate this window to be about 200–400 MeV. These results lead us to predict that extremely high energy collisions of very small nuclei (possibly hadrons) are better suited for observing signatures of a large DCC. Another possibility is to focus on peripheral collisions of heavy nuclei.


Author(s):  
Neda Bahremandi Tolou ◽  
Hamidreza Salimijazi ◽  
Mahshid Kharaziha ◽  
Giuliana Faggio ◽  
Rosa Chierchia ◽  
...  

2020 ◽  
Vol 15 (S359) ◽  
pp. 178-179
Author(s):  
Saqib Hussain ◽  
Rafael Alves Batista ◽  
Elisabete Maria de Gouveia Dal Pino ◽  
Klaus Dolag

AbstractWe present results of the propagation of high-energy cosmic rays (CRs) and their secondaries in the intracluster medium (ICM). To this end, we employ three-dimensional cosmological magnetohydrodynamical simulations of the turbulent intergalactic medium to explore the propagation of CRs with energies between 1014 and 1019 eV. We study the interaction of test particles with this environment considering all relevant electromagnetic, photohadronic, photonuclear, and hadronuclear processes. Finally, we discuss the consequences of the confinement of high-energy CRs in clusters for the production of gamma rays and neutrinos.


Sign in / Sign up

Export Citation Format

Share Document