Mesoporous transition metal dichalcogenide ME2 (M = Mo, W; E = S, Se) with 2-D layered crystallinity as anode materials for lithium ion batteries

RSC Advances ◽  
2016 ◽  
Vol 6 (17) ◽  
pp. 14253-14260 ◽  
Author(s):  
Yoon Yun Lee ◽  
Gwi Ok Park ◽  
Yun Seok Choi ◽  
Jeong Kuk Shon ◽  
Jeongbae Yoon ◽  
...  

Mesoporous transition metal dichalcogenides with 2D layered crystallinity, synthesized through a melting-infiltration assisted nano-replication, exhibit excellent electrochemical performances for lithium-storage.

2019 ◽  
Vol 3 (10) ◽  
pp. 2577-2582 ◽  
Author(s):  
Chuang Wang ◽  
Xiao-Dong Zhu ◽  
Ke-Xin Wang ◽  
Liang-Liang Gu ◽  
Sheng-You Qiu ◽  
...  

Composite films comprising MXene nanosheets sandwiched by transition metal dichalcogenides/oxides are constructed as flexible lithium-ion battery anodes through vacuum-assisted filtration.


2017 ◽  
Vol 8 ◽  
pp. 2711-2718 ◽  
Author(s):  
Xiaoli Sun ◽  
Zhiguo Wang

Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide monolayers of the type MX2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W; X= S, Se, Te). The adsorption and diffusion of lithium on the stable MX2 phase was also investigated for potential application as an anode for lithium ion batteries. Some of these compounds were found to be stable in the 2H phase and some are in the 1T or 1T' phase, but only a few of them were stable in both 2H/1T or 2H/1T' phases. The results show that lithium is energetically favourable for adsorption on MX2 monolayers, which can be semiconductors with a narrow bandgap and metallic materials. Lithium cannot be adsorbed onto 2H-WS2 and 2H-WSe2, which have large bandgaps of 1.66 and 1.96 eV, respectively. The diffusion energy barrier is in the range between 0.17 and 0.64 eV for lithium on MX2 monolayers, while for most of the materials it was found to be around 0.25 eV. Therefore, this work illustrated that most of the MX2 monolayers explored in this work can be used as promising anode materials for lithium ion batteries.


2021 ◽  
Vol 3 (1) ◽  
pp. 272-278
Author(s):  
Pilar G. Vianna ◽  
Aline dos S. Almeida ◽  
Rodrigo M. Gerosa ◽  
Dario A. Bahamon ◽  
Christiano J. S. de Matos

The scheme illustrates a monolayer transition-metal dichalcogenide on an epsilon-near-zero substrate. The substrate near-zero dielectric constant is used as the enhancement mechanism to maximize the SHG nonlinear effect on monolayer 2D materials.


Nanoscale ◽  
2021 ◽  
Author(s):  
Albert Bruix ◽  
Jeppe Vang Lauritsen ◽  
Bjork Hammer

Nanomaterials based on MoS2 and related transition metal dichalcogenides are remarkably versatile; MoS2 nanoparticles are proven catalysts for processes such as hydrodesulphurization and the hydrogen evolution reaction, and transition metal...


Author(s):  
Wenqian Han ◽  
Guannan Guo ◽  
Yan Xia ◽  
Jing Ning ◽  
Yuwei Deng ◽  
...  

Transition metal dichalcogenides (TMDs) are promising anode materials for sodium-ion batteries (SIBs), but suffer from low rate capability and poor cycling stability. Here, we describe our efforts in designing a...


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonathan Förste ◽  
Nikita V. Tepliakov ◽  
Stanislav Yu. Kruchinin ◽  
Jessica Lindlau ◽  
Victor Funk ◽  
...  

Abstract The optical properties of monolayer and bilayer transition metal dichalcogenide semiconductors are governed by excitons in different spin and valley configurations, providing versatile aspects for van der Waals heterostructures and devices. Here, we present experimental and theoretical studies of exciton energy splittings in external magnetic field in neutral and charged WSe2 monolayer and bilayer crystals embedded in a field effect device for active doping control. We develop theoretical methods to calculate the exciton g-factors from first principles for all possible spin-valley configurations of excitons in monolayer and bilayer WSe2 including valley-indirect excitons. Our theoretical and experimental findings shed light on some of the characteristic photoluminescence peaks observed for monolayer and bilayer WSe2. In more general terms, the theoretical aspects of our work provide additional means for the characterization of single and few-layer transition metal dichalcogenides, as well as their heterostructures, in the presence of external magnetic fields.


Sign in / Sign up

Export Citation Format

Share Document