scholarly journals Second-harmonic generation enhancement in monolayer transition-metal dichalcogenides by using an epsilon-near-zero substrate

2021 ◽  
Vol 3 (1) ◽  
pp. 272-278
Author(s):  
Pilar G. Vianna ◽  
Aline dos S. Almeida ◽  
Rodrigo M. Gerosa ◽  
Dario A. Bahamon ◽  
Christiano J. S. de Matos

The scheme illustrates a monolayer transition-metal dichalcogenide on an epsilon-near-zero substrate. The substrate near-zero dielectric constant is used as the enhancement mechanism to maximize the SHG nonlinear effect on monolayer 2D materials.

Nanoscale ◽  
2018 ◽  
Vol 10 (35) ◽  
pp. 16365-16397 ◽  
Author(s):  
Vipul Agarwal ◽  
Kaushik Chatterjee

Nanosheets of transition metal dichalcogenide (TMDs), the graphene-like two-dimensional (2D) materials, exhibit a unique combination of properties and have attracted enormous research interest for a wide range of applications including catalysis, functional electronics, solid lubrication, photovoltaics, energy materials and most recently in biomedical applications.


2015 ◽  
Vol 49 (6) ◽  
pp. 791-796 ◽  
Author(s):  
E. D. Mishina ◽  
N. E. Sherstyuk ◽  
A. P. Shestakova ◽  
S. D. Lavrov ◽  
S. V. Semin ◽  
...  

2021 ◽  
Author(s):  
Seongjoon Lim ◽  
Shangke Pan ◽  
Kefeng Wang ◽  
Alexey Ushakov ◽  
Ekaterina Sukhanova ◽  
...  

Abstract Intercalation raises manifold possibilities to manipulate the properties of two-dimensional (2D) materials1, and its impact on local electronic/magnetic properties has drawn much attention with the rise of nano-structured 2D materials2,3. Typically, changing an ionic state in a solid involves a dramatic local change of energy as well as orbital/spin magnetic moment from its ground state. However, the atomic investigation of the charging process of an intercalant ion in 2D material has never been explored while such subject has been studied in artificially deposited atoms on thin insulating 2D layers using scanning probe microscopy4–7. Herein, we demonstrate an atomical manipulation of the charge and spin state of Co ions on a metallic NbS2, obtained by cleaving of Co-intercalated NbS2. Density functional theory investigation of various Co configurations reveals that the charging is possible due to a change in the crystal field at the surface and a significant coupling between NbS2 and intercalants occurs via orbitals of the a1g symmetry. The results can be generalized to numerous other combinations of intercalants and base matrixes, suggesting that intercalated transition metal dichalcogenides can be a new platform to introduce single-atom operation 2D electronics/spintronics.


2D Materials ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 045020
Author(s):  
William Murray ◽  
Michael Lucking ◽  
Ethan Kahn ◽  
Tianyi Zhang ◽  
Kazunori Fujisawa ◽  
...  

Author(s):  
Aniceto B. Maghirang ◽  
Zhi-Quan Huang ◽  
Rovi Angelo B. Villaos ◽  
Chia-Hsiu Hsu ◽  
Liang-Ying Feng ◽  
...  

Abstract Ultrathin Janus two-dimensional (2D) materials are attracting intense interest currently. Substitutional doping of 2D transition metal dichalcogenides (TMDs) is of importance for tuning and possible enhancement of their electronic, physical and chemical properties toward industrial applications. Using systematic first-principles computations, we propose a class of Janus 2D materials based on the monolayers MX2 (M = V, Nb, Ta, Tc, or Re; X = S, Se, or Te) with halogen (F, Cl, Br, or I) or pnictogen (N, P, As, Sb, or Bi) substitution. Nontrivial phases are obtained on pnictogen substitution of group VB (V, Nb, or Ta), whereas for group VIIB (Tc or Re), the nontrivial phases are obtained for halogen substitution. Orbital analysis shows that the nontrivial phase is driven by the splitting of M-dyz and M-dxz orbitals. Our study demonstrates that the Janus 2D materials have the tunability and suitability for synthesis under various conditions.


2019 ◽  
Vol 2 (11) ◽  
pp. 19002601-19002608 ◽  
Author(s):  
George Miltos Maragkakis ◽  
◽  
Sotiris Psilodimitrakopoulos ◽  
Leonidas Mouchliadis ◽  
Ioannis Paradisanos ◽  
...  

Author(s):  
Sai Manoj Gali ◽  
David Beljonne

Transition Metal Dichalcogenides (TMDCs) are emerging as promising two-dimensional (2D) materials. Yet, TMDCs are prone to inherent defects such as chalcogen vacancies, which are detrimental to charge transport. Passivation of...


Sign in / Sign up

Export Citation Format

Share Document