scholarly journals Self-assembly of active attractive spheres

Soft Matter ◽  
2015 ◽  
Vol 11 (21) ◽  
pp. 4158-4166 ◽  
Author(s):  
Vasileios Prymidis ◽  
Harmen Sielcken ◽  
Laura Filion

We study the self-assembly of a system of self-propelled, Lennard-Jones particles using Brownian dynamics simulations.

2019 ◽  
Vol 21 (42) ◽  
pp. 23447-23458 ◽  
Author(s):  
Manuella Cerbelaud ◽  
Khaoula Lebdioua ◽  
Công Tâm Tran ◽  
Benoît Crespin ◽  
Anne Aimable ◽  
...  

92 bead colloids are used to study the self-assembly of large surface anistropic particles.


RSC Advances ◽  
2018 ◽  
Vol 8 (24) ◽  
pp. 13526-13536
Author(s):  
Yali Wang ◽  
Xuehao He

To mimic the unique properties of capsid (protein shell of a virus), we performed Brownian dynamics simulations of the self-assembly of amphiphilic truncated cone particles with anisotropic interactions.


Langmuir ◽  
2011 ◽  
Vol 27 (2) ◽  
pp. 835-842 ◽  
Author(s):  
Costas Georgiadis ◽  
Othonas Moultos ◽  
Leonidas N. Gergidis ◽  
Costas Vlahos

2016 ◽  
Author(s):  
C. A. Brackley ◽  
B. Liebchen ◽  
D. Michieletto ◽  
F. Mouvet ◽  
P. R. Cook ◽  
...  

AbstractFluorescence microscopy reveals that the contents of many (membrane-free) nuclear “bodies” exchange rapidly with the soluble pool whilst the underlying structure persists; such observations await a satisfactory biophysical explanation. To shed light on this, we perform large-scale Brownian dynamics simulations of a chromatin fiber interacting with an ensemble of (multivalent) DNA-binding proteins; these proteins switch between two states – active (binding) and inactive (non-binding). This system provides a model for any DNA-binding protein that can be modified post-translationally to change its affinity for DNA (e.g., like the phosphorylation of a transcription factor). Due to this out-of-equilibrium process, proteins spontaneously assemble into clusters of self-limiting size, as individual proteins in a cluster exchange with the soluble pool with kinetics like those seen in photo-bleaching experiments. This behavior contrasts sharply with that exhibited by “equilibrium”, or non-switching, proteins that exist only in the binding state; when these bind to DNA non-specifically, they form clusters that grow indefinitely in size. Our results point to post-translational modification of chromatin-bridging proteins as a generic mechanism driving the self-assembly of highly dynamic, non-equilibrium, protein clusters with the properties of nuclear bodies. Such active modification also reshapes intra-chromatin contacts to give networks resembling those seen in topologically-associating domains, as switching markedly favors local (short-range) contacts over distant ones.


2009 ◽  
Vol 20 (09) ◽  
pp. 1443-1456 ◽  
Author(s):  
ELAINE R. CHAN ◽  
LIN C. HO ◽  
SHARON C. GLOTZER

A molecular simulation study of the mesoscale self-assembly of tethered nanoparticles having a cubic geometry is presented. Minimal models of the tethered nanocubes are developed to represent a polyhedral oligomeric silsesquioxane (POSS) molecule with polymeric substituents. The models incorporate some of the essential structural features and interaction specificity of POSS molecules, and facilitate access to the long length and timescales pertinent to the assembly process while foregoing atomistic detail. The types of self-assembled nanostructures formed by the tethered nanocubes in solution are explored via Brownian dynamics simulations using these minimal models. The influence of various parameters, including the conditions of the surrounding medium, the molecular weight and chemical composition of the tether functionalities, and the number of tethers on the nanocube, on the formation of specific structures is demonstrated. The role of cubic nanoparticle geometry on self-assembly is also assessed by comparing the types of structures formed by tethered nanocubes and by their flexible coil triblock copolymer and tethered nanosphere counterparts. Morphological phase diagrams are proposed to describe the behavior of the tethered nanocubes.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2108
Author(s):  
Qingxiao Li ◽  
You-Liang Zhu ◽  
Xinhui Zhang ◽  
Kaidong Xu ◽  
Jina Wang ◽  
...  

We systematically investigated the roles of tail length on the self-assembly of shape amphiphiles composed of a hydrophobic polymer chain (tail) and a hydrophilic nanoparticle in selective solvent using Brownian dynamics simulations. The shape amphiphiles exhibited a variety of self-assembled aggregate morphologies which can be tuned by changing tail length (n) in combination with amphiphile concentration (φ) and system temperature (T*). Specifically, at high φ with T*=1.4, the morphology varied following the sequence “spheres → cylinders → vesicles” upon increasing n, agreeing well with experimental observations. At low φ with T*=1.4 or at high φ with T*=1.2, the morphology sequence becomes “spheres or spheres and cylinders mixture → cylinders → vesicles → spheres” upon increasing n, which has not been found experimentally. Two morphological phase diagrams depending on n and φ were constructed for T*=1.4 and 1.2, respectively. The rich phase behaviors on varying tail length could provide the feasible routes to fabricate target aggregate morphologies in various applications, especially for the vesicles with tunable thickness of membranes that are crucial in drug and gene delivery.


Sign in / Sign up

Export Citation Format

Share Document