Fabrication of CeO2/Fe2O3 composite nanospindles for enhanced visible light driven photocatalysts and supercapacitor electrodes

2015 ◽  
Vol 3 (29) ◽  
pp. 15248-15258 ◽  
Author(s):  
N. Sabari Arul ◽  
D. Mangalaraj ◽  
R. Ramachandran ◽  
A. Nirmala Grace ◽  
Jeong In Han

Hybrid CeO2/Fe2O3 composite nanospindles (CNSs) are synthesized by a simple and cost effective co-precipitation method, utilized for wastewater treatment and energy storage applications.

2021 ◽  
Author(s):  
Qiushi Jiang ◽  
Zhaolian Han ◽  
Yafeng Yuan ◽  
Zhiqiang Cheng

Abstract In this study, CaO prepared by calcination treatment from abandoned Achatina fulica shell was used as a raw material, and the nano-flower-like CaO/ZnO photocatalytic composite material was prepared through co-precipitation method. SEM study showed ZnO with spindle-like petals in the range of 500-1000 nm grown on the surface of CaO carrier. The mapping image shows that the base component of the nanometer flower is mainly CaO, which is because CaO is not only in the reaction as a carrier, but also creates an alkaline environment in the methanol system, which is advantageous for co-precipitation. UV-vis spectroscopy shows that the visible light absorption of composites has red shifts, besides, PL, EIS and photocurrent test showed that the composites have stronger electronic hole separation capabilities. The visible light degradation test of rhodamine B showed that CaO/ZnO photocatalytic composite could degrade 90% of the pollutants in 25 min, superior to CaO and ZnO, exhibiting recyclability properties, which is a potential candidate with cost-effective and sustainable photocatalysts.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 788
Author(s):  
Beibei Zhang ◽  
Lu Zhang ◽  
Yulong Zhang ◽  
Chao Liu ◽  
Jiexiang Xia ◽  
...  

In this work, a simple chemical precipitation method was employed to prepare spherical-like Ag3PO4 material (IL-Ag3PO4) with exposed {111} facet in the presence of reactive ionic liquid 1-butyl-3-methylimidazole dihydrogen phosphate ([Omim]H2PO4). The crystal structure, microstructure, optical properties, and visible-light photocatalytic performance of as-prepared materials were studied in detail. The addition of ionic liquids played a crucial role in forming spherical-like morphology of IL-Ag3PO4 sample. Compared with traditional Ag3PO4 material, the intensity ratio of {222}/{200} facets in XRD pattern of IL-Ag3PO4 was significantly enhanced, indicating the main {111} facets exposed on the surface of IL-Ag3PO4 sample. The presence of exposed {111} facet was advantageous for facilitating the charge carrier transfer and separation. The light-harvesting capacity of IL-Ag3PO4 was larger than that of Ag3PO4. The photocatalytic activity of samples was evaluated by degrading rhodamine B (RhB) and p-chlorophenol (4-CP) under visible light. The photodegradation efficiencies of IL-Ag3PO4 were 1.94 and 2.45 times higher than that of Ag3PO4 for RhB and 4-CP removal, respectively, attributing to a synergy from the exposed {111} facet and enhanced photoabsorption. Based on active species capturing experiments, holes (h+), and superoxide radical (•O2−) were the main active species for visible-light-driven RhB photodegradation. This study will provide a promising prospect for designing and synthesizing ionic liquid-assisted photocatalysts with a high efficiency.


2020 ◽  
Vol 8 (9) ◽  
pp. 3010-3016 ◽  
Author(s):  
Chunhua Su ◽  
Meijia Qiu ◽  
Yipeng An ◽  
Siyuan Sun ◽  
Chuanxi Zhao ◽  
...  

Long-term stable, fast switching α-Ni(OH)2 electrodes for electrochromic energy storage application has been fabricated by one-step preheating treatment. The cost-effective fabrication is expected to expand to other metal hydroxide materials.


2021 ◽  
pp. 1-16
Author(s):  
R. Kumari ◽  
H. Jaiswal ◽  
T. Chowdhury ◽  
A.K. Ghosh

Aflatoxin B1 (AFB1) is a most potent carcinogenic secondary metabolite produced by Aspergillus flavus. As a food safety concern, development of a rapid, cost effective, sensitive and easy to use method for the detection of aflatoxin is of prime requirement. In this study, AFB1 was conjugated with bovine serum albumin (BSA), and AFB1-BSA conjugate was purified by HPLC. Purification was confirmed by UV-Vis spectroscopy, FTIR and MALDI-TOF mass spectrometry. The polyclonal antibody was raised against AFB1-BSA conjugate in rabbit and purified by protein A sepharose and BSA sepharose affinity columns. Iron oxide nanoparticles (MNPs) were synthesised by co-precipitation method and their surface was functionalised with (3-aminopropyl) triethoxysilane (APTES). Size of APTES conjugated MNPs was determined by electron microscopy, and characterised by several biophysical techniques. The purified anti-AFB1 antibody was conjugated with surface functionalised MNPs and the conjugation was confirmed by determining the sizes of free and antibody conjugated MNPs by field emission scanning electron microscope where increase of particle sizes from 10-20 to 40-50 nm was observed due to antibody conjugation. Anti-AFB1 antibody conjugated MNPs were used for capturing AFB1 from the aflatoxin spiked wheat grains with a recovery percentage of more than 80% and used effectively five times. The captured AFB1 was then quantified by a sensitive colorimetric assay where colourless AFB1 was first converted into coumaric acid by NaOH. Subsequently, coumaric acid reacted with 2,6-dibromoquinone-4-chloroimide (DBQC) to a green-coloured indophenol product which was quantified spectrophotometrically. AFB1 contamination as low as 2 μg/kg in wheat grains was detected by the developed technique suggesting its potential application for both qualitative and quantitative analysis of aflatoxins present in feed and food materials.


Sign in / Sign up

Export Citation Format

Share Document