Carbonate coprecipitation preparation of Li-rich layered oxides using the oxalate anion ligand as high-energy, high-power and durable cathode materials for lithium-ion batteries

2015 ◽  
Vol 3 (42) ◽  
pp. 21219-21226 ◽  
Author(s):  
Long Xu ◽  
Peiyu Hou ◽  
Yantao Zhang ◽  
Hongzhou Zhang ◽  
Dawei Song ◽  
...  

A green, highly efficient and low cost ligand oxalate anion is successfully introduced to prepare spherical precursors for high-energy, high-power and durable cathode materials.

Nanoscale ◽  
2021 ◽  
Author(s):  
Dongdong Wang ◽  
Qizhang Yan ◽  
Mingqian Li ◽  
Hongpeng Gao ◽  
Jianhua Tian ◽  
...  

Nickel (Ni)-rich layered oxides such as LiNi0.6Co0.2Mn0.2O2 (NCM622) represent one of the most promising candidates for the next-generation high-energy lithium-ion batteries (LIBs). However, the pristine Ni-rich cathode materials usually suffer...


2014 ◽  
Vol 5 (5) ◽  
pp. 1401156 ◽  
Author(s):  
Aiswarya Bhaskar ◽  
Steffen Krueger ◽  
Vassilios Siozios ◽  
Jie Li ◽  
Sascha Nowak ◽  
...  

2018 ◽  
Vol 3 (5) ◽  
pp. 748-803 ◽  
Author(s):  
Hongge Pan ◽  
Shiming Zhang ◽  
Jian Chen ◽  
Mingxia Gao ◽  
Yongfeng Liu ◽  
...  

Li- and Mn-rich layered oxides (LMRO) have drawn much attention for application as cathode materials for lithium-ion batteries due to their high-energy density of over 1000 W h kg−1.


2019 ◽  
Vol 85 (9) ◽  
pp. 44-57
Author(s):  
Sergiy Malovanyy

The rechargeable lithium-ion batteries have been dominating the portable electronic market for the past two decades with high energy density and long cycle-life. However, applications of lithium-ion batteries in large-scale stationary energy storage are likely to be limited by the high cost and availability of lithium resources. The room temperature Na-ion secondary battery have received extensive investigations for large-scale energy storage systems (EESs) and smart grids lately due to similar chemistry of “rocking-chair” sodium storage mechanism, lower price and huge abundance. They are considered as an alternative to lithium-ion batteries for large-scale applications, bringing an increasing research interests in materials for sodium-ion batteries. Although there are many obstacles to overcome before the Na-ion battery becomes commercially available, recent research discoveries corroborate that some of the cathode materials for the Na-ion battery have indeed advantages over its Li-ion competitors. Layered oxides are promising cathode materials for sodium ion batteries because of their high theoretical capacities. In this publication, a review of layered oxides (NaxMO2, M = V, Cr, Mn, Fe, Co, Ni, and a mixture of 2 or 3 elements) as a Na-ion battery cathode is presented. O3 and P2 layered sodium transition metal oxides  NaxMO2 are a promising class of cathode materials for Na secondary battery applications. These materials, however, all suffer from capacity decline when the extraction of Na exceeds certain capacity limits. Understanding the causes of this capacity decay is critical to unlocking the potential of these materials for battery applications.  Single layered oxide systems are well characterized not only for their electrochemical performance, but also for their structural transitions during the cycle. Binary oxides systems are investigated in order to address issues regarding low reversible capacity, capacity retention, operating voltage, and structural stability. Some materials already have reached high energy density, which is comparable to that of LiFePO4. On the other hand, the carefully chosen elements in the electrodes also largely determine the cost of SIBs. Therefore, earth abundant-based compounds are ideal candidates for reducing the cost of electrodes. Among all low-cost metal elements, cathodes containing iron, chromium and manganese are the most representative ones. The aim of the article is to present the development of Na layered oxide materials in the past as well as the state of the art today.


2019 ◽  
Vol 944 ◽  
pp. 714-720
Author(s):  
Jing Wang ◽  
Dan Hua Li ◽  
Ran Wang ◽  
Shi Chen ◽  
Yue Feng Su ◽  
...  

Nickel-rich layered oxides (Ni ≥60%) are considered as the most promising cathode materials for lithium-ion batteries due to its high energy density and low cost. However, its cycling performance is seriously influenced by the synthesis condition, like the sintering temperature, time and atmosphere. Herein, we investigate different properties of LiNi0.83Co0.11Mn0.06O2 (LNCMO) sintered from 720 to780 °C, and the cathode calcined at 760 °C display the most perfect layered structure and the uniform distribution of primary particles size. Therefore, the LNCMO sintered at 760 °C exhibited the best rate capability of 118 mAh·g-1 at 10 C and the highest capacity retention of 95.44 % after 100 cycles at 1 C. Our results indicate that the cycling performance and rate capability of LNCMO are heavily depended on the sintering temperature.


JOM ◽  
2017 ◽  
Vol 69 (9) ◽  
pp. 1484-1496 ◽  
Author(s):  
Jianlin Li ◽  
Zhijia Du ◽  
Rose E. Ruther ◽  
Seong Jin AN ◽  
Lamuel Abraham David ◽  
...  

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 122
Author(s):  
Renwei Lu ◽  
Xiaolong Ren ◽  
Chong Wang ◽  
Changzhen Zhan ◽  
Ding Nan ◽  
...  

Lithium-ion hybrid capacitors (LICs) are regarded as one of the most promising next generation energy storage devices. Commercial activated carbon materials with low cost and excellent cycling stability are widely used as cathode materials for LICs, however, their low energy density remains a significant challenge for the practical applications of LICs. Herein, Na0.76V6O15 nanobelts (NaVO) were prepared and combined with commercial activated carbon YP50D to form hybrid cathode materials. Credit to the synergism of its capacitive effect and diffusion-controlled faradaic effect, NaVO/C hybrid cathode displays both superior cyclability and enhanced capacity. LICs were assembled with the as-prepared NaVO/C hybrid cathode and artificial graphite anode which was pre-lithiated. Furthermore, 10-NaVO/C//AG LIC delivers a high energy density of 118.9 Wh kg−1 at a power density of 220.6 W kg−1 and retains 43.7 Wh kg−1 even at a high power density of 21,793.0 W kg−1. The LIC can also maintain long-term cycling stability with capacitance retention of approximately 70% after 5000 cycles at 1 A g−1. Accordingly, hybrid cathodes composed of commercial activated carbon and a small amount of high energy battery-type materials are expected to be a candidate for low-cost advanced LICs with both high energy density and power density.


Sign in / Sign up

Export Citation Format

Share Document