Effect of the N content of Fe/N/graphene catalysts for the oxygen reduction reaction in alkaline media

2015 ◽  
Vol 3 (48) ◽  
pp. 24487-24494 ◽  
Author(s):  
Carlota Domínguez ◽  
F. J. Pérez-Alonso ◽  
Mohamed Abdel Salam ◽  
Shaeel A. Al-Thabaiti ◽  
Miguel A. Peña ◽  
...  

The ORR activity of Fe/N/G is a balance between the N-content and BET area.

RSC Advances ◽  
2015 ◽  
Vol 5 (2) ◽  
pp. 1571-1580 ◽  
Author(s):  
Dongyoon Shin ◽  
Beomgyun Jeong ◽  
Myounghoon Choun ◽  
Joey D. Ocon ◽  
Jaeyoung Lee

An optimal catalyst testing methodology that could allow precise benchmarking to obtain standardized ORR activity is put forward.


2018 ◽  
Vol 115 (26) ◽  
pp. 6626-6631 ◽  
Author(s):  
Liu Yang ◽  
Daojian Cheng ◽  
Haoxiang Xu ◽  
Xiaofei Zeng ◽  
Xin Wan ◽  
...  

It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The half-wave potential of SA-Fe/NG is only 30 mV less than 20% Pt/C in acidic medium, while it is 30 mV superior to 20% Pt/C in alkaline medium. Moreover, SA-Fe/NG shows extremely high stability with only 12 mV and 15 mV negative shifts after 5,000 cycles in acidic and alkaline media, respectively. Impressively, the SA-Fe/NG-based acidic proton exchange membrane fuel cell (PEMFC) exhibits a high power density of 823 mW cm−2. Combining experimental results and density-functional theory (DFT) calculations, we further reveal that the origin of high-ORR activity of SA-Fe/NG is from the Fe-pyrrolic-N species, because such molecular incorporation is the key, leading to the active site increase in an order of magnitude which successfully clarifies the bottleneck puzzle of why a small amount of iron in the SA-Fe catalysts can exhibit extremely superior ORR activity.


2020 ◽  
Vol 11 (23) ◽  
pp. 5994-5999 ◽  
Author(s):  
Huishan Shang ◽  
Zhuoli Jiang ◽  
Danni Zhou ◽  
Jiajing Pei ◽  
Yu Wang ◽  
...  

A sulfur modified Mn–N–C single atom catalyst was constructed through an atomic interface strategy, with outstanding ORR activity in alkaline media.


RSC Advances ◽  
2016 ◽  
Vol 6 (106) ◽  
pp. 104183-104192 ◽  
Author(s):  
Xianlei Zhang ◽  
Dingling Yu ◽  
Yaqing Zhang ◽  
Wenhui Guo ◽  
Xiuxiu Ma ◽  
...  

Novel N–S–C hybrids were synthesized by a facile one-step pyrolysis method, in which the obtained N–S–C 900 was a robust catalyst with enhanced ORR activity and excellent operational stability in alkaline media, superior to the Pt/C catalyst.


2016 ◽  
Vol 4 (45) ◽  
pp. 17828-17837 ◽  
Author(s):  
Jiali Wang ◽  
Fuyi Chen ◽  
Yachao Jin ◽  
Roy L. Johnston

AuNi hierarchical dendrites were fabricated by a facile electrodeposition and dealloying method with exceptional ORR activity and remarkable long-term stability.


2020 ◽  
Vol 9 (1) ◽  
pp. 843-852
Author(s):  
Hunan Jiang ◽  
Jinyang Li ◽  
Mengni Liang ◽  
Hanpeng Deng ◽  
Zuowan Zhou

AbstractAlthough Fe–N/C catalysts have received increasing attention in recent years for oxygen reduction reaction (ORR), it is still challenging to precisely control the active sites during the preparation. Herein, we report FexN@RGO catalysts with the size of 2–6 nm derived from the pyrolysis of graphene oxide and 1,1′-diacetylferrocene as C and Fe precursors under the NH3/Ar atmosphere as N source. The 1,1′-diacetylferrocene transforms to Fe3O4 at 600°C and transforms to Fe3N and Fe2N at 700°C and 800°C, respectively. The as-prepared FexN@RGO catalysts exhibited superior electrocatalytic activities in acidic and alkaline media compared with the commercial 10% Pt/C, in terms of electrochemical surface area, onset potential, half-wave potential, number of electrons transferred, kinetic current density, and exchange current density. In addition, the stability of FGN-8 also outperformed commercial 10% Pt/C after 10000 cycles, which demonstrates the as-prepared FexN@RGO as durable and active ORR catalysts in acidic media.


RSC Advances ◽  
2016 ◽  
Vol 6 (81) ◽  
pp. 77786-77795 ◽  
Author(s):  
Nan Wang ◽  
Jingjun Liu ◽  
Weiwei Gu ◽  
Ye Song ◽  
Feng Wang

The interficial covalent bonds formed in La2O3/C hybrid are responsible for its enhanced ORR activity.


ChemSusChem ◽  
2014 ◽  
Vol 7 (12) ◽  
pp. 3356-3361 ◽  
Author(s):  
Zhiming Cui ◽  
Minghui Yang ◽  
Hao Chen ◽  
Mengtian Zhao ◽  
Francis J. DiSalvo

2019 ◽  
Vol 71 ◽  
pp. 234-241 ◽  
Author(s):  
Yun Sik Kang ◽  
Yoonhye Heo ◽  
Jae Young Jung ◽  
Yeonsun Sohn ◽  
Soo-Hyoung Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document