scholarly journals EDOT–diketopyrrolopyrrole copolymers for polymer solar cells

2016 ◽  
Vol 4 (9) ◽  
pp. 3477-3486 ◽  
Author(s):  
Chao Wang ◽  
Christian J. Mueller ◽  
Eliot Gann ◽  
Amelia C. Y. Liu ◽  
Mukundan Thelakkat ◽  
...  

The photovoltaic properties of a series of EDOT-containing DPP polymers with optical band gap as low as 1.13 eV are reported.

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4101
Author(s):  
Siyang Liu ◽  
Shuwang Yi ◽  
Peiling Qing ◽  
Weijun Li ◽  
Bin Gu ◽  
...  

The novel and appropriate molecular design for polymer donors are playing an important role in realizing high-efficiency and high stable polymer solar cells (PSCs). In this work, four conjugated polymers (PIDT-O, PIDTT-O, PIDT-S and PIDTT-S) with indacenodithiophene (IDT) and indacenodithieno [3,2-b]thiophene (IDTT) as the donor units, and alkoxy-substituted benzoxadiazole and benzothiadiazole derivatives as the acceptor units have been designed and synthesized. Taking advantages of the molecular engineering on polymer backbones, these four polymers showed differently photophysical and photovoltaic properties. They exhibited wide optical bandgaps of 1.88, 1.87, 1.89 and 1.91 eV and quite impressive hole mobilities of 6.01 × 10−4, 7.72 × 10−4, 1.83 × 10−3, and 1.29 × 10−3 cm2 V−1 s−1 for PIDT-O, PIDTT-O, PIDT-S and PIDTT-S, respectively. Through the photovoltaic test via using PIDT-O, PIDTT-O, PIDT-S and PIDTT-S as donor materials and [6,6]-phenyl-C-71-butyric acid methyl ester (PC71BM) as acceptor materials, all the PSCs presented the high open circuit voltages (Vocs) over 0.85 V, whereas the PIDT-S and PIDTT-S based devices showed higher power conversion efficiencies (PCEs) of 5.09% and 4.43%, respectively. Interestingly, the solvent vapor annealing (SVA) treatment on active layers could improve the fill factors (FFs) extensively for these four polymers. For PIDT-S and PIDTT-S, the SVA process improved the FFs exceeding 71%, and ultimately the PCEs were increased to 6.05%, and 6.12%, respectively. Therefore, this kind of wide band-gap polymers are potentially candidates as efficient electron-donating materials for constructing high-performance PSCs.


2017 ◽  
Vol 10 (6) ◽  
pp. 1443-1455 ◽  
Author(s):  
Seo-Jin Ko ◽  
Quoc Viet Hoang ◽  
Chang Eun Song ◽  
Mohammad Afsar Uddin ◽  
Eunhee Lim ◽  
...  

A new series of wide band gap photovoltaic polymers based on a fluorinated phenylene-alkoxybenzothiadiazole unit with an optical band gap of over 1.90 eV are designed and utilized for high-performance single- and multi-junction bulk heterojunction polymer solar cells.


2016 ◽  
Vol 4 (24) ◽  
pp. 5656-5663 ◽  
Author(s):  
Jicheng Zhang ◽  
Hongmei Xiao ◽  
Xuejuan Zhang ◽  
Yang Wu ◽  
Guangwu Li ◽  
...  

To reduce energy loss, planar acceptors with high LUMO levels were synthesized for wide-band-gap-polymer solar cells. A PCE of 4.05% was obtained with an active layer thickness of 35 nm and a transmittance of 76.1%.


2017 ◽  
Vol 5 (19) ◽  
pp. 9141-9147 ◽  
Author(s):  
Deyu Liu ◽  
Chunyang Gu ◽  
Junyi Wang ◽  
Dangqiang Zhu ◽  
Yonghai Li ◽  
...  

Naphthalene bonded via the β-position to an asymmetric benzodithiophene unit leads to a decent trade-off between the optical band gap and open circuit voltage in PSCs.


2011 ◽  
Vol 347-353 ◽  
pp. 870-873
Author(s):  
Chun Rong Xue

Nanocrystalline silicon film has become the research hit of today’ s P-V solar technology. It’s optical band gap was controlled through changing the grain size and crystalline volume fraction for the quanta dimension effect. The crystalline volume fraction in nc-Si:H is modulated by varying the hydrogen concentration in the silane plasma. Also, the crystallinity of the material increases with increasing hydrogen dilution ratio, the band tail energy width of the nc-Si:H concurrently decreases. Two sets of nc-Si:H solar cells were made with different layer thicknesss, their electronic and photonic bandgap, absorption coefficient, optical band gap, nanocrystalline grain size(D), and etc have been stuied. In addition, we discussed the relationship between the stress of nc-Si thin films and H2 ratio. At last nc-Si:H solar cells have been designed and prepared successfully in the optimized processing parameters.


2021 ◽  
Author(s):  
Tingxing Zhao ◽  
Congcong Cao ◽  
Hengtao Wang ◽  
Xiangyu Shen ◽  
Hanjian Lai ◽  
...  

2008 ◽  
Vol 18 (45) ◽  
pp. 5468 ◽  
Author(s):  
Fengling Zhang ◽  
Johan Bijleveld ◽  
Erik Perzon ◽  
Kristofer Tvingstedt ◽  
Sophie Barrau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document