scholarly journals Phthalimide-based π-conjugated small molecules with tailored electronic energy levels for use as acceptors in organic solar cells

2015 ◽  
Vol 3 (34) ◽  
pp. 8904-8915 ◽  
Author(s):  
Arthur D. Hendsbee ◽  
Seth M. McAfee ◽  
Jon-Paul Sun ◽  
Theresa M. McCormick ◽  
Ian G. Hill ◽  
...  

The design, synthesis, and characterization of seven phthalimide-based organic π-conjugated small molecules are reported.

2014 ◽  
Vol 6 (11) ◽  
pp. 2411-2415 ◽  
Author(s):  
Ara Cho ◽  
Yujeong Kim ◽  
Chang Eun Song ◽  
Sang-Jin Moon ◽  
Eunhee Lim

2020 ◽  
Vol 4 (7) ◽  
pp. 2168-2175
Author(s):  
B. Yadagiri ◽  
K. Narayanaswamy ◽  
Towhid H. Chowdhury ◽  
Ashraful Islam ◽  
Vinay Gupta ◽  
...  

We report the synthesis and characterization of a dithienogermole (DTGe) based small molecule, named Ge-PO-2CN, as a donor material for bulk heterojunction (BHJ) organic solar cells (OSCs) and as a hole transport material (HTM) for dopant-free perovskite solar cells (PSCs).


Author(s):  
Dorota Zając ◽  
Dariusz Przybylski ◽  
Jadwiga Sołoducho

AbstractDeveloping effective and low‐cost organic semiconductors is an opportunity for the development of organic solar cells (OPV). Herein, we report the molecular design, synthesis and characterization of two molecules with D–A–D–A configuration: 2-cyano-3-(5-(8-(3,4-ethylenodioxythiophen-5-yl)-2,3-diphenylquinoxalin-5-yl)thiophen-2-yl)acrylic acid (6) and 2-cyano-3-(5-(2,3-diphenyl-8-(thiophen-2-yl)quinoxalin-5-yl)thiophen-2-yl)acrylic acid (7). Moreover, we investigated the structural, theoretical and optical properties. The distribution of HOMO/LUMO orbitals and the values of the ionization potential indicate good semiconducting properties of the compounds and that they can be a bipolar material. Also, the optical study show good absorption in visible light (λabs 380–550 nm). We investigate the theoretical optoelectronic properties of obtained compounds as potential materials for solar cells.


2015 ◽  
Vol 1784 ◽  
Author(s):  
Venkata Neti

ABSTRACTA series of fluorine appended highly conjugated fullerenes were prepared containing fluoro-α-cyanostilbene and aryl ester units. These modified PCBM dyads are fully characterized by NMR, Mass spectrometry, UV-vis, and cyclic voltammetry (Figures 1-4). It was found that the presence of fluoro-α-cyanostilbenes and esters affects the cyclic voltammetry and absorption in the UV-Vis region. The PCBA modified fullerenes significantly influences the HOMO-LUMO energy and wide absorption compared to PCBM.


2014 ◽  
Vol 55 (21) ◽  
pp. 3244-3248 ◽  
Author(s):  
Tanika Khanasa ◽  
Narid Prachumrak ◽  
Palita Kochapradist ◽  
Supawadee Namuangruk ◽  
Tinnagon Keawin ◽  
...  

2021 ◽  
Vol 01 ◽  
Author(s):  
Min Deng ◽  
Zhenkai Ji ◽  
Xiaopeng Xu ◽  
Liyang Yu ◽  
Qiang Peng

Background: Perylene diimide (PDI) is among the most investigated non-fullerene electron acceptor for organic solar cells (OSCs). Constructing PDI derivatives into three-dimensional propeller-like molecular structures is not only one of the viable routes to suppress the over aggregation tendency of the PDI chromophores, but also raises possibilities to tune and optimize the optoelectronic property of the molecules. Objective: In this work, we reported the design, synthesis, and characterization of three electron-accepting materials, namely BOZ-PDI, BTZ-PDI, and BIZ-PDI, each with three PDI arms linked to benzotrioxazole, benzotrithiazole, and benzotriimidazole based center cores, respectively. Method: The introduction of electron-withdrawing center cores with heteroatoms does not significantly complicate the synthesis of the acceptor molecules but drastically influences the energy levels of the propeller-like PDI derivatives. Result: The highest power conversion efficiency was obtained with benzoxazole-based BOZ-PDI reaching 7.70% for its higher photon absorption and charge transport ability. Conclusion: This work explores the utilization of electron-withdrawing cores with heteroatoms in the propeller-like PDI derivatives, which provides a handy tool to construct high-performance non-fullerene acceptor materials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiaqi Du ◽  
Ke Hu ◽  
Jinyuan Zhang ◽  
Lei Meng ◽  
Jiling Yue ◽  
...  

AbstractAll-polymer solar cells (all-PSCs) based on polymerized small molecular acceptors (PSMAs) have made significant progress recently. Here, we synthesize two A-DA’D-A small molecule acceptor based PSMAs of PS-Se with benzo[c][1,2,5]thiadiazole A’-core and PN-Se with benzotriazole A’-core, for the studies of the effect of molecular structure on the photovoltaic performance of the PSMAs. The two PSMAs possess broad absorption with PN-Se showing more red-shifted absorption than PS-Se and suitable electronic energy levels for the application as polymer acceptors in the all-PSCs with PBDB-T as polymer donor. Cryogenic transmission electron microscopy visualizes the aggregation behavior of the PBDB-T donor and the PSMA in their solutions. In addition, a bicontinuous-interpenetrating network in the PBDB-T:PN-Se blend film with aggregation size of 10~20 nm is clearly observed by the photoinduced force microscopy. The desirable morphology of the PBDB-T:PN-Se active layer leads its all-PSC showing higher power conversion efficiency of 16.16%.


2011 ◽  
Vol 161 (13-14) ◽  
pp. 1330-1335 ◽  
Author(s):  
Dongbo Mi ◽  
Ji-Hoon Kim ◽  
Sung Cheol Yoon ◽  
Changjin Lee ◽  
Jin-Kyun Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document