scholarly journals Ni on the CeO2(110) and (100) surfaces: adsorption vs. substitution effects on the electronic and geometric structures and oxygen vacancies

2016 ◽  
Vol 18 (16) ◽  
pp. 11139-11149 ◽  
Author(s):  
W. Q. Li ◽  
S. Goverapet Srinivasan ◽  
D. R. Salahub ◽  
T. Heine

We report density functional theory (DFT) calculations of the interactions of both Ni adsorbate and substitutional dopant with the ceria (110) and (100) surfaces to explain the origin of the activity of Ni/ceria catalysts.

Nanoscale ◽  
2018 ◽  
Vol 10 (41) ◽  
pp. 19536-19546 ◽  
Author(s):  
Julian Gaberle ◽  
Alexander L. Shluger

The electronic and geometric structures of a range of intrinsic and extrinsic defects in black phosphorus (BP) are calculated using Density Functional Theory (DFT) and a hybrid density functional.


2017 ◽  
Vol 19 (39) ◽  
pp. 26606-26620 ◽  
Author(s):  
Pjotrs A. Žguns ◽  
Andrei V. Ruban ◽  
Natalia V. Skorodumova

Ordering of dopants and oxygen vacancies is studied for Gd-doped ceria (xGd ≤ 0.25) by means of a combined density functional theory (DFT) and cluster expansion approach, where the cluster interactions derived from DFT calculations are further used in Monte Carlo simulations.


2021 ◽  
Author(s):  
Xinpeng Zhao ◽  
Zhimin Zhou ◽  
hu luo ◽  
Yanfei Zhang ◽  
Wang Liu ◽  
...  

Combined experiments and density functional theory (DFT) calculations provided insights into the role of the environment-friendly γ-valerolactone (GVL) as a solvent in the hydrothermal conversion of glucose into lactic acid...


Author(s):  
Hanlin Gan ◽  
Liang Peng ◽  
Feng Long Gu

The mechanism of the Cu(i)-catalyzed domino reaction furnishing 1-aryl-1,2,3-triazole assisted by CuI and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is explored with density functional theory (DFT) calculations.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Long Lin ◽  
Linwei Yao ◽  
Shaofei Li ◽  
Zhengguang Shi ◽  
Kun Xie ◽  
...  

AbstractFinding the active sites of suitable metal oxides is a key prerequisite for detecting CH$$_4$$ 4 . The purpose of the paper is to investigate the adsorption of CH$$_4$$ 4 on intrinsic and oxygen-vacancies CuO (111) and (110) surfaces using density functional theory calculations. The results show that CH$$_4$$ 4 has a strong adsorption energy of −0.370 to 0.391 eV at all site on the CuO (110) surface. The adsorption capacity of CH$$_4$$ 4 on CuO (111) surface is weak, ranging from −0.156 to −0.325 eV. In the surface containing oxygen vacancies, the adsorption capacity of CuO surface to CH$$_4$$ 4 is significantly stronger than that of intrinsic CuO surface. The results indicate that CuO (110) has strong adsorption and charge transfer capacity for CH$$_4$$ 4 , which may provide experimental guidance.


2019 ◽  
Vol 21 (6) ◽  
pp. 3227-3241 ◽  
Author(s):  
Krishnamoorthy Arumugam ◽  
Neil A. Burton

Of particular interest within the +6 uranium complexes is the linear uranyl(vi) cation and it forms numerous coordination complexes in solution and exhibits incongruent redox behavior depending on coordinating ligands. This DFT study predicts VI/V reduction potentials of a range of uranyl(vi) complexes in non-aqueous solutions within ∼0.10−0.20 eV of experiment.


2018 ◽  
Vol 74 (12) ◽  
pp. 1641-1649
Author(s):  
Wei-Tsung Lee ◽  
Matthias Zeller ◽  
David Upp ◽  
Yuliya Politanska ◽  
Doug Steinman ◽  
...  

Treatment of the ortho-triazacyclophane 1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-triene [(C6H5)3(NH)(NCH3)2, L1] with Fe[N(SiMe3)2]2 yields the dimeric iron(II) complex bis(μ-1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-trien-7-ido)bis[(μ-1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-trien-7-ido)iron(II)], [Fe(C20H18N3)4] or Fe2(L1)4 (9). Dissolution of 9 in tetrahydrofuran (THF) results in solvation by two THF ligands and the formation of a simpler monoiron complex, namely bis(μ-1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-trien-7-ido-κN 7)bis(tetrahydrofuran-κO)iron(II), [Fe(C20H18N3)2(C4H8O)2] or (L1)2Fe(THF)2 (10). The reaction is reversible and 10 reverts in vacuo to diiron complex 9. In the structures of both 9 and 10, the monoanionic triazacyclophane ligand L1− is observed in only the less-symmetric saddle conformation. No bowl-shaped crown conformers are observed in the solid state, thus preventing chelating κ3-coordination to the metal as had been proposed earlier based on density functional theory (DFT) calculations. Instead, the L1− ligands are bound in either a η2-chelating fashion through the amide and one amine donor (for one of the four ligands of 9), or solely through their amide N atoms in an even simpler monodentate η1-coordination mode. Density functional calculations on dimer 9 revealed nearly full cationic charges on each Fe atom and no bonding interaction between the two metal centers, consistent with the relatively long Fe...Fe distance of 2.912 (1) Å observed in the solid state.


Polyhedron ◽  
2013 ◽  
Vol 50 (1) ◽  
pp. 602-611 ◽  
Author(s):  
Manashi Chakraborty ◽  
Sathi Roychowdhury ◽  
Nikhil Ranjan Pramanik ◽  
Tapas Kumar Raychaudhuri ◽  
Tapan Kumar Mondal ◽  
...  

2021 ◽  
Author(s):  
Xiaohang Wu ◽  
Ying Lv ◽  
Yuyuan Bai ◽  
Haizhu Yu ◽  
Manzhou Zhu

Herein, density functional theory (DFT) calculations were performed to elucidate the mechanism of the reversible single atom size conversion between [Au10(DMPP)4(C6H11C≡C)]3+ and [Au9(DMPP)4]3+ (DMPP is 2,2’-bis-(dimethylphosphino)-1,1’-biphenyl, the simplified, theoretical model...


Sign in / Sign up

Export Citation Format

Share Document