Thermal decomposition of sodium amide, NaNH2, and sodium amide hydroxide composites, NaNH2–NaOH

2016 ◽  
Vol 18 (36) ◽  
pp. 25257-25264 ◽  
Author(s):  
Lars H. Jepsen ◽  
Peikun Wang ◽  
Guotao Wu ◽  
Zhitao Xiong ◽  
Flemming Besenbacher ◽  
...  

Composites of NaNH2 and the omnipresent NaOH have a lower melting temperature and form a non-stoichiometric solid solution, Na(OH)1−x(NH2)x, during heating.

Soft Matter ◽  
2020 ◽  
Vol 16 (25) ◽  
pp. 5886-5891 ◽  
Author(s):  
Navaneeth K. Marath ◽  
J. S. Wettlaufer

When a particle is placed in a material with a lower bulk melting temperature, intermolecular forces can lead to the existence of a “premelted” liquid film of the lower melting temperature material.


2018 ◽  
Vol 732 ◽  
pp. 603-612 ◽  
Author(s):  
Nurul Farhana Ibrahim ◽  
Hasmaliza Mohamad ◽  
Siti Noor Fazliah Mohd Noor ◽  
Nurazreena Ahmad

Alloy Digest ◽  
1981 ◽  
Vol 30 (1) ◽  

Abstract CERROLOW-147 Alloy is a bismuth-base non-eutectic alloy that melts over the narrow, low-temperature range of 142-149 F (61-65 C). It has a slightly lower melting temperature than CERROBEND Alloy (Alloy Digest Bi-6, August 1978) and functions about as well for the same uses if its small freezing range is not objectionable. Cerrolow-147 Alloy provides engineers and technicians with an easily castable material that is ready for use as soon as it freezes. It is highly suitable in industry for such uses as anchoring parts for machining and support for bending tubing and extrusions. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on casting, forming, heat treating, and machining. Filing Code: Bi-21. Producer or source: Cerro Metal Products.


2021 ◽  
Vol 13 (6) ◽  
pp. 3284
Author(s):  
Martin Wieser ◽  
Andreas Schaur ◽  
Seraphin Hubert Unterberger ◽  
Roman Lackner

In order to meet the technical specifications in roofing applications, the bitumen used for this purpose is standardly modified by polymers. This, in general, allows the re-use of recycled polymer during the production of polymer-modified bitumen (PmB), simultaneously reducing the amount of polymeric waste. Recycling processes, however, may degrade or contaminate polymers, leading to reduced crystallinity and lower melting temperature. Six different recycled polyolefins (high crystallinity: iPP, HDPE; reduced crystallinity: APP, PP Copolymer; waxy polyolefins: Wax 105, Wax 115) were assessed on their suitability for roofing applications. Mixing characteristics, polymer distribution and thermo-mechanical properties of the PmB samples were determined, employing fluorescence microscopy, modulated temperature differential scanning calorimetry (MTDSC) and dynamic shear rheometry (DSR). Depending on mixing properties, two levels of polymer content (5 and 16 wt% or 16 and 30 wt%) were considered. High crystallinity polymers exhibited the biggest increase in |G*| and lowest phase angle. Reduced crystallinity polymers were more easily dispersed and showed improved |G*| and phase angle. Waxy polyolefins improved bitumen similarly to reduced crystallinity polymers and are easily dispersed. The results suggest, that a reduced crystallinity or lower melting temperature of the recycled polymers resulting from degradation or contamination may be beneficial, resulting in improved mixing behavior and a more homogeneous distribution of the polymer within the bitumen.


2009 ◽  
Vol 631-632 ◽  
pp. 327-331 ◽  
Author(s):  
K. Sakon ◽  
Y. Hirokawa ◽  
Yasuji Masubuchi ◽  
Shinichi Kikkawa

Sputter deposited Fe0.7Co0.3 nitride thin film had zinc blende structure. It was thermally decomposed completely back to the ferromagnetic Fe0.7Co0.3 alloy above 400°C. As-deposited nitride thin films obtained in cosputtering of (Fe0.7Co0.3)1-xAlx composite target with nitrogen sputter gas were solid solutions with zinc blende (x≤0.44) and wurtzite (x>0.5) type structure, respectively. The largest magneto resistance ratio of 0.24% was observed on the Fe0.7Co0.3 alloy particles dispersed in AlN thin film obtained by thermal decomposition of the nitride solid solution with x=0.66 at 500°C.


1997 ◽  
Vol 12 (10) ◽  
pp. 2584-2588 ◽  
Author(s):  
M. A. Petrova ◽  
G. A. Mikirticheva ◽  
A. S. Novikova ◽  
V. F. Popova

Phase relations in two binary systems MgAl2O4–ZnAl2O4 and MgAl2O4–Mg2TiO4 have been studied and phase diagrams for them have been constructed. Based on the data of x-ray phase and crystal-optical analyses, the formation of a continuous series of solid solutions with spinel structure between the terminal members of the systems studied has been established. In the MgAl2O4–ZnAl2O4 system the solid solution is stable in the range from room temperature to melting temperature. In the MgAl2O4–Mg2TiO4 system the solid solution decomposes below 1380 °C, yielding the formation of limited regions of homogeneity on the basis of MgAlM2O4 and Mg2+2δ Ti1–δO4. Decomposition of the solid solution is accompanied by crystallization of MgTiO3.


Sign in / Sign up

Export Citation Format

Share Document