scholarly journals Surface adsorption of sulfonated poly(phenylene sulfone)/C14TAB mixtures and its correlation with foam film stability

2016 ◽  
Vol 18 (27) ◽  
pp. 18414-18423 ◽  
Author(s):  
Martin Uhlig ◽  
Reinhard Miller ◽  
Regine von Klitzing

Polyelectrolyte/surfactant mixtures of rigid monosulfonated poly(phenylene sulfone) (sPSO2-220) and tetradecyl trimethylammonium bromide (C14TAB) were investigated by surface tension, surface elasticity and foam film stability measurements.

2020 ◽  
Vol 4 (4) ◽  
pp. 53
Author(s):  
Dimi Arabadzhieva ◽  
Plamen Tchoukov ◽  
Elena Mileva

Aqueous mixtures of cationic hexadecyltrimethylammonium chloride (CTAC) and nonionic pentaethyleneglycol monododecyl ether (C12E5) are investigated. Adsorption layer properties are systematically studied within a wide concentration range for a 1:1 molar ratio of the surfactants. Surface tension and dilatational rheology measurements are conducted by profile analysis tensiometry. The interfacial data are juxtaposed to drainage kinetics and stability results for microscopic foam films, investigated by microinterferometric thin liquid film instrumentation. The obtained results give experimental evidence of synergistic interactions in the studied solutions, as compared to the corresponding single surfactant systems. Specific runs of dynamic and equilibrium surface tension curves are registered against the total surfactant quantity; the surface dilatational elasticities for the mixtures are systematically higher. A clear correlation is established between adsorption layer performance and foam film characteristics. The maxima of the film lifetimes are well outlined, and the respective values are shifted towards lower overall concentrations. The reported results substantiate the key role of the adsorption layers, and the surface dilatational properties in particular, for foam film drainage kinetics and stability. The well-expressed synergy observed in adsorption layer and foam film properties suggests the substantial benefits of using mixed surfactant systems in the design and fine-tuning of foam systems for innovative applications.


2020 ◽  
Vol 56 (6) ◽  
pp. 952-955 ◽  
Author(s):  
Martin Uhlig ◽  
Oliver Löhmann ◽  
Salomé Vargas Ruiz ◽  
Imre Varga ◽  
Regine von Klitzing ◽  
...  

The foam film stability of polyelectrolyte/surfactant mixtures is rationalized using structural data from neutron reflectometry for the first time.


PEDIATRICS ◽  
1987 ◽  
Vol 79 (1) ◽  
pp. 38-46
Author(s):  
Machiko Ikegami ◽  
Yotaro Agata ◽  
Tarek Elkady ◽  
Mikko Hallman ◽  
David Berry ◽  
...  

Natural sheep surfactant, rabbit surfactant, human surfactant, and surfactant TA were compared for in vitro surface properties and for responses of preterm lambs to treatment. Equivalent amounts of sheep, rabbit, and human surfactants were needed to lower the surface tension to less than 10 dynes/cm, whereas four times less surfactant TA similarly lowered the surface tension. Surface-spreading rates were similar for the surfactants. The surface adsorption of the batch of human surfactant tested was much slower than was adsorption of the other surfactants. Ventilation was significantly improved in all surfactant-treated lambs relative to the control lambs, indicating the general efficacy of the surfactant treatments. Overall, surfactant TA had the best in vitro characteristics, yet the preterm lambs treated at birth with surfactant TA had lower Po2 values and higher ventilatory requirements than did the sheep surfactant-treated lambs. The in vivo responses to rabbit surfactant were intermediate between the responses to sheep surfactant and to surfactant TA. Human surfactant resulted in the least effective clinical response. More of the phosphatidylcholine associated with human surfactant and surfactant TA was lost from the alveoli and lung tissue after four hours of ventilation than was lost from sheep or rabbit surfactant-treated lambs. More intravascular radiolabeled albumin leaked into the alveoli of the surfactant TA-treated lambs than sheep or rabbit surfactant-treated. lambs. The four surfactants also had different sensitivities to the effects on minimum surface tensions of the soluble proteins present in alveolar washes. The study demonstrates that the range of clinical responses was not predictable based on the in vitro surface properties that we measured. The surfactants behaved differently with respect to loss from the lungs and sensitivity to soluble proteins. Factors other than surface properties are important for the in vivo responses to surfactant treatments.


Sign in / Sign up

Export Citation Format

Share Document