scholarly journals Probing the excited state relaxation dynamics of pyrimidine nucleosides in chloroform solution

2016 ◽  
Vol 194 ◽  
pp. 683-708 ◽  
Author(s):  
Katharina Röttger ◽  
Hugo J. B. Marroux ◽  
Hendrik Böhnke ◽  
David T. J. Morris ◽  
Angus T. Voice ◽  
...  

Ultrafast transient electronic and vibrational absorption spectroscopy (TEAS and TVAS) of 2′-deoxy-cytidine (dC) and 2′-deoxy-thymidine (dT) dissolved in chloroform examines their excited-state dynamics and the recovery of ground electronic state molecules following absorption of ultraviolet light. The chloroform serves as a weakly interacting solvent, allowing comparisons to be drawn with prior experimental studies of the photodynamics of these nucleosides in the gas phase and in polar solvents such as water. The pyrimidine base nucleosides have some propensity to dimerize in aprotic solvents, but the monomer photochemistry can be resolved clearly and is the focus of this study. UV absorption at a wavelength of 260 nm excites a 1ππ* ← S0 transition, but prompt crossing of a significant fraction (50% in dC, 17% in dT) of the 1ππ* population into a nearby 1nπ* state is too fast for the experiments to resolve. The remaining flux on the 1ππ* state leaves the vertical Franck–Condon region and encounters a conical intersection with the ground electronic state of ethylenic twist character. In dC, the 1ππ* state decays to the ground state with a time constant of 1.1 ± 0.1 ps. The lifetime of the 1nπ* state is much longer in the canonical forms of both molecules: recovery of the ground state population from these states occurs with time constants of 18.6 ± 1.1 ps in amino-oxo dC and ∼114 ps in dT, indicating potential energy barriers to the 1nπ*/S0 conical intersections. The small fraction of the imino-oxo tautomer of dC present in solution has a longer-lived 1nπ* state with a lifetime for ground state recovery of 193 ± 55 ps. No evidence is found for photo-induced tautomerization of amino-oxo dC to the imino-oxo form, or for population of low lying triplet states of this nucleoside. In contrast, ∼8% of the UV-excited dT molecules access the long-lived T1 (3ππ*) state through the 1nπ* state. The primary influence of the solvent appears to be the degree to which it destabilizes the states of 1nπ* character, with consequences for the lifetimes of these states as well as the triplet state yields.

2019 ◽  
Vol 21 (39) ◽  
pp. 21960-21965 ◽  
Author(s):  
Mark A. Burton ◽  
Benjamin T. Russ ◽  
Matthew P. Bucchino ◽  
Phillip M. Sheridan ◽  
Lucy M. Ziurys

Measurement of the millimeter-wave spectrum of the KO radical, using direct absorption methods, suggests that the ground electronic state is X2Πi with a close-lying excited state approximately 120 cm−1 higher in energy.


2018 ◽  
Author(s):  
Isaac Ramphal ◽  
Chin Lee ◽  
Daniel Neumark

The photodissociation dynamics of jet-cooled methylsulfinyl radicals, CH3SO, at 248 nm have been investigated using molecular beam photofragment translational spectroscopy. The primary channel is CH3S + O, which occurs via the initially prepared excited CH3SO state by rapid cleavage of the S-O bond to produce ground state products. The minor SO + CH3 channel has two components in comparable proportions: a fast feature corresponding to rapid C-S cleavage on the excited state to produce CH3 and electronically excited SO, and a slow feature due to internal conversion of CH3SO followed by statistical dissociation on the ground electronic state. Statistical ground state dissociation also produces small amounts of CH2SO, likely sulfine, and H-atoms.


2018 ◽  
Author(s):  
Isaac Ramphal ◽  
Chin Lee ◽  
Daniel Neumark

The photodissociation dynamics of jet-cooled methylsulfinyl radicals, CH3SO, at 248 nm have been investigated using molecular beam photofragment translational spectroscopy. The primary channel is CH3S + O, which occurs via the initially prepared excited CH3SO state by rapid cleavage of the S-O bond to produce ground state products. The minor SO + CH3 channel has two components in comparable proportions: a fast feature corresponding to rapid C-S cleavage on the excited state to produce CH3 and electronically excited SO, and a slow feature due to internal conversion of CH3SO followed by statistical dissociation on the ground electronic state. Statistical ground state dissociation also produces small amounts of CH2SO, likely sulfine, and H-atoms.


2015 ◽  
Vol 17 (44) ◽  
pp. 29518-29530 ◽  
Author(s):  
Matthieu Sala ◽  
Stéphane Guérin ◽  
Fabien Gatti

We propose a new mechanism for the radiationless decay of photoexcited pyrazine to its ground electronic state involving a conical intersection between the dark Au(nπ) state and the ground state.


2019 ◽  
Vol 5 (9) ◽  
pp. eaax6625 ◽  
Author(s):  
Jennifer M. Ruddock ◽  
Haiwang Yong ◽  
Brian Stankus ◽  
Wenpeng Du ◽  
Nathan Goff ◽  
...  

We explore the photo-induced kinetics of 1,3-cyclohexadiene upon excitation at 200 nm to the 3p state by ultrafast time-resolved, gas-phase x-ray scattering using the Linac Coherent Light Source. Analysis of the scattering anisotropy reveals that the excitation leads to the 3px and 3py Rydberg electronic states, which relax to the ground state with a time constant of 208 ± 11 fs. In contrast to the well-studied 266 nm excitation, at 200 nm the majority of the molecules (76 ± 3%) relax to vibrationally hot cyclohexadiene in the ground electronic state. A subsequent reaction on the ground electronic state surface leads from the hot cyclohexadiene to 1,3,5-hexatriene, with rates for the forward and backward reactions of 174 ± 13 and 355 ± 45 ps, respectively. The scattering pattern of the final hexatriene product reveals a thermal distribution of rotamers about the carbon-carbon single bonds.


2020 ◽  
Author(s):  
Erin Sullivan ◽  
Steven Saric ◽  
Daniel Neumark

<p>Photodissociation of the <i>i</i>-C<sub>3</sub>H<sub>7</sub>O radical is investigated using fast beam photofragment translational spectroscopy. Neutral <i>i</i>-C<sub>3</sub>H<sub>7</sub>O radicals are produced through the photodetachment of a fast beam of <i>i</i>-C<sub>3</sub>H<sub>7</sub>O<sup>-</sup> anions and are subsequently dissociated using 248 nm (5.0 eV). The dominant product channels are CH<sub>3</sub> + CH<sub>3</sub>CHO and OH + C<sub>3</sub>H<sub>6</sub> with some contribution from H + C<sub>3</sub>H<sub>6</sub>O. CH<sub>3</sub> and H loss are attributed to dissociation on the ground electronic state of <i>i</i>-C<sub>3</sub>H<sub>7</sub>O, but in a nonstatistical manner because RRKM dissociation rates exceed the rate of energy randomization. Translational energy and angular distributions for OH loss are consistent with ground state dissociation, but the branching ratio for this channel is considerably higher than predicted from RRKM rate calculations. These results corroborate what has been observed previously in C<sub>2</sub>H<sub>5</sub>O dissociation at 5.2 eV that yields CH<sub>3</sub>, H, and OH loss. Additionally, <i>i</i>-C<sub>3</sub>H<sub>7</sub>O undergoes three-body fragmentation to CH<sub>3</sub> + CH<sub>3</sub> + HCO and CH<sub>3</sub> + CH<sub>4</sub> + CO. These three-body channels are attributed to dissociation of <i>i</i>-C<sub>3</sub>H<sub>7</sub>O to CH<sub>3</sub> + CH<sub>3</sub>CHO, followed by secondary dissociation of CH<sub>3</sub>CHO on its ground electronic state.</p>


2020 ◽  
Author(s):  
Erin Sullivan ◽  
Steven Saric ◽  
Daniel Neumark

<p>Photodissociation of the <i>i</i>-C<sub>3</sub>H<sub>7</sub>O radical is investigated using fast beam photofragment translational spectroscopy. Neutral <i>i</i>-C<sub>3</sub>H<sub>7</sub>O radicals are produced through the photodetachment of a fast beam of <i>i</i>-C<sub>3</sub>H<sub>7</sub>O<sup>-</sup> anions and are subsequently dissociated using 248 nm (5.0 eV). The dominant product channels are CH<sub>3</sub> + CH<sub>3</sub>CHO and OH + C<sub>3</sub>H<sub>6</sub> with some contribution from H + C<sub>3</sub>H<sub>6</sub>O. CH<sub>3</sub> and H loss are attributed to dissociation on the ground electronic state of <i>i</i>-C<sub>3</sub>H<sub>7</sub>O, but in a nonstatistical manner because RRKM dissociation rates exceed the rate of energy randomization. Translational energy and angular distributions for OH loss are consistent with ground state dissociation, but the branching ratio for this channel is considerably higher than predicted from RRKM rate calculations. These results corroborate what has been observed previously in C<sub>2</sub>H<sub>5</sub>O dissociation at 5.2 eV that yields CH<sub>3</sub>, H, and OH loss. Additionally, <i>i</i>-C<sub>3</sub>H<sub>7</sub>O undergoes three-body fragmentation to CH<sub>3</sub> + CH<sub>3</sub> + HCO and CH<sub>3</sub> + CH<sub>4</sub> + CO. These three-body channels are attributed to dissociation of <i>i</i>-C<sub>3</sub>H<sub>7</sub>O to CH<sub>3</sub> + CH<sub>3</sub>CHO, followed by secondary dissociation of CH<sub>3</sub>CHO on its ground electronic state.</p>


Author(s):  
Adil Nameh Ayaash

The present work concerns by study of spectroscopic properties for Beryllium monobromide BeBr. Franck Condon Factor of BeBr molecule had been calculated theoretically for ground state X2Σ+ and excited state A2Π by special integrals by depending on spectroscopic constants for this molecule. The Dissociation energy and potential curves of this molecule is studied in this work by using Hua potential function, the results of potential curves and Franck Condon Factors converge with other researchers results.


Open Physics ◽  
2013 ◽  
Vol 11 (9) ◽  
Author(s):  
Łukasz Miądowicz ◽  
Patryk Jasik ◽  
Józef Sienkiewicz

AbstractWe present four promising schemes for photoassociative formation of KLi molecule in its ground electronic state. Analysis is based on newly calculated adiabatic potentials supported by transition dipole moments and Franck-Condon factors.


2003 ◽  
Vol 57 (4) ◽  
pp. 439-447 ◽  
Author(s):  
James A. Kleimeyer ◽  
Joel M. Harris

Resolution of transient excited-state Raman scattering from ground-state and solvent bands is a challenging spectroscopic measurement since excited-state spectral features are often of low intensity, overlapping the dominant ground-state and solvent bands. The Raman spectra of these intermediates can be resolved, however, by acquiring time-resolved data and using multidimensional data analysis methods. In the absence of a physical model describing the kinetic behavior of a reaction, resolution of the pure-component spectra from these data can be accomplished using self-modeling curve resolution, a factor analysis technique that relies on the correlation in the data along a changing composition dimension to resolve the component spectra. A two-laser UV pump-probe resonance-enhanced Raman instrument was utilized to monitor the kinetics of amine quenching of excited-triplet states of benzophenone. The formation and decay of transient intermediates were monitored over time, from 15 ns to 100 μs. Factor analysis of the time-resolved spectral data identified three significant components in the data. The time-resolved intensities at each Raman wavenumber shift were projected onto the three significant eigenvectors, and least-squares criteria were developed to find the common plane in the space of the eigenvectors that includes the observed data. Within that plane, the three pure-component spectra were resolved using geometric criteria of convex hull analysis. The resolved spectra were found to arise from benzophenone excited-triplet states, diphenylketyl radicals, and the solvent and ground-state benzophenone.


Sign in / Sign up

Export Citation Format

Share Document