scholarly journals Photodissociation of Iso-Propoxy (I-C3H7O) Radical at 248 Nm

Author(s):  
Erin Sullivan ◽  
Steven Saric ◽  
Daniel Neumark

<p>Photodissociation of the <i>i</i>-C<sub>3</sub>H<sub>7</sub>O radical is investigated using fast beam photofragment translational spectroscopy. Neutral <i>i</i>-C<sub>3</sub>H<sub>7</sub>O radicals are produced through the photodetachment of a fast beam of <i>i</i>-C<sub>3</sub>H<sub>7</sub>O<sup>-</sup> anions and are subsequently dissociated using 248 nm (5.0 eV). The dominant product channels are CH<sub>3</sub> + CH<sub>3</sub>CHO and OH + C<sub>3</sub>H<sub>6</sub> with some contribution from H + C<sub>3</sub>H<sub>6</sub>O. CH<sub>3</sub> and H loss are attributed to dissociation on the ground electronic state of <i>i</i>-C<sub>3</sub>H<sub>7</sub>O, but in a nonstatistical manner because RRKM dissociation rates exceed the rate of energy randomization. Translational energy and angular distributions for OH loss are consistent with ground state dissociation, but the branching ratio for this channel is considerably higher than predicted from RRKM rate calculations. These results corroborate what has been observed previously in C<sub>2</sub>H<sub>5</sub>O dissociation at 5.2 eV that yields CH<sub>3</sub>, H, and OH loss. Additionally, <i>i</i>-C<sub>3</sub>H<sub>7</sub>O undergoes three-body fragmentation to CH<sub>3</sub> + CH<sub>3</sub> + HCO and CH<sub>3</sub> + CH<sub>4</sub> + CO. These three-body channels are attributed to dissociation of <i>i</i>-C<sub>3</sub>H<sub>7</sub>O to CH<sub>3</sub> + CH<sub>3</sub>CHO, followed by secondary dissociation of CH<sub>3</sub>CHO on its ground electronic state.</p>

2020 ◽  
Author(s):  
Erin Sullivan ◽  
Steven Saric ◽  
Daniel Neumark

<p>Photodissociation of the <i>i</i>-C<sub>3</sub>H<sub>7</sub>O radical is investigated using fast beam photofragment translational spectroscopy. Neutral <i>i</i>-C<sub>3</sub>H<sub>7</sub>O radicals are produced through the photodetachment of a fast beam of <i>i</i>-C<sub>3</sub>H<sub>7</sub>O<sup>-</sup> anions and are subsequently dissociated using 248 nm (5.0 eV). The dominant product channels are CH<sub>3</sub> + CH<sub>3</sub>CHO and OH + C<sub>3</sub>H<sub>6</sub> with some contribution from H + C<sub>3</sub>H<sub>6</sub>O. CH<sub>3</sub> and H loss are attributed to dissociation on the ground electronic state of <i>i</i>-C<sub>3</sub>H<sub>7</sub>O, but in a nonstatistical manner because RRKM dissociation rates exceed the rate of energy randomization. Translational energy and angular distributions for OH loss are consistent with ground state dissociation, but the branching ratio for this channel is considerably higher than predicted from RRKM rate calculations. These results corroborate what has been observed previously in C<sub>2</sub>H<sub>5</sub>O dissociation at 5.2 eV that yields CH<sub>3</sub>, H, and OH loss. Additionally, <i>i</i>-C<sub>3</sub>H<sub>7</sub>O undergoes three-body fragmentation to CH<sub>3</sub> + CH<sub>3</sub> + HCO and CH<sub>3</sub> + CH<sub>4</sub> + CO. These three-body channels are attributed to dissociation of <i>i</i>-C<sub>3</sub>H<sub>7</sub>O to CH<sub>3</sub> + CH<sub>3</sub>CHO, followed by secondary dissociation of CH<sub>3</sub>CHO on its ground electronic state.</p>


2018 ◽  
Author(s):  
Isaac Ramphal ◽  
Chin Lee ◽  
Daniel Neumark

The photodissociation dynamics of jet-cooled methylsulfinyl radicals, CH3SO, at 248 nm have been investigated using molecular beam photofragment translational spectroscopy. The primary channel is CH3S + O, which occurs via the initially prepared excited CH3SO state by rapid cleavage of the S-O bond to produce ground state products. The minor SO + CH3 channel has two components in comparable proportions: a fast feature corresponding to rapid C-S cleavage on the excited state to produce CH3 and electronically excited SO, and a slow feature due to internal conversion of CH3SO followed by statistical dissociation on the ground electronic state. Statistical ground state dissociation also produces small amounts of CH2SO, likely sulfine, and H-atoms.


2018 ◽  
Author(s):  
Isaac Ramphal ◽  
Chin Lee ◽  
Daniel Neumark

The photodissociation dynamics of jet-cooled methylsulfinyl radicals, CH3SO, at 248 nm have been investigated using molecular beam photofragment translational spectroscopy. The primary channel is CH3S + O, which occurs via the initially prepared excited CH3SO state by rapid cleavage of the S-O bond to produce ground state products. The minor SO + CH3 channel has two components in comparable proportions: a fast feature corresponding to rapid C-S cleavage on the excited state to produce CH3 and electronically excited SO, and a slow feature due to internal conversion of CH3SO followed by statistical dissociation on the ground electronic state. Statistical ground state dissociation also produces small amounts of CH2SO, likely sulfine, and H-atoms.


2015 ◽  
Vol 17 (44) ◽  
pp. 29518-29530 ◽  
Author(s):  
Matthieu Sala ◽  
Stéphane Guérin ◽  
Fabien Gatti

We propose a new mechanism for the radiationless decay of photoexcited pyrazine to its ground electronic state involving a conical intersection between the dark Au(nπ) state and the ground state.


2019 ◽  
Vol 5 (9) ◽  
pp. eaax6625 ◽  
Author(s):  
Jennifer M. Ruddock ◽  
Haiwang Yong ◽  
Brian Stankus ◽  
Wenpeng Du ◽  
Nathan Goff ◽  
...  

We explore the photo-induced kinetics of 1,3-cyclohexadiene upon excitation at 200 nm to the 3p state by ultrafast time-resolved, gas-phase x-ray scattering using the Linac Coherent Light Source. Analysis of the scattering anisotropy reveals that the excitation leads to the 3px and 3py Rydberg electronic states, which relax to the ground state with a time constant of 208 ± 11 fs. In contrast to the well-studied 266 nm excitation, at 200 nm the majority of the molecules (76 ± 3%) relax to vibrationally hot cyclohexadiene in the ground electronic state. A subsequent reaction on the ground electronic state surface leads from the hot cyclohexadiene to 1,3,5-hexatriene, with rates for the forward and backward reactions of 174 ± 13 and 355 ± 45 ps, respectively. The scattering pattern of the final hexatriene product reveals a thermal distribution of rotamers about the carbon-carbon single bonds.


1998 ◽  
Vol 231 (2-3) ◽  
pp. 171-182 ◽  
Author(s):  
Kenshi Takahashi ◽  
Nori Taniguchi ◽  
Yutaka Matsumi ◽  
Masahiro Kawasaki

2020 ◽  
Author(s):  
Bethan Nichols ◽  
Erin Sullivan ◽  
Daniel Neumark

<p>The photodissociation dynamics of the <i>tert</i>-butyl perthiyl (<i>t</i>-BuSS) radical are investigated by fast-beam coincidence translational spectroscopy. A fast (6-8 keV) beam of neutral <i>t</i>-BuSS radicals is produced via photodetachment of the corresponding anion, followed by photodissociation at 248 nm (5.00 eV) or 193 nm (6.42 eV) and coincident detection of the neutral products. Photofragment mass and translational energy distributions are obtained at both wavelengths. At 248 nm, the dominant product channel (90%) is found to be S loss, with a product translational energy distribution that peaks close to the maximum available energy and an anisotropic photofragment angular distribution, indicating dissociation along a repulsive excited state. A minor channel (10%) leading to the formation of S<sub>2</sub> + <i>t</i>-Bu is also observed. At 193 nm, both two- and three-body dissociation are observed. Formation of S<sub>2</sub> + <i>t</i>-Bu is the dominant two-body product channel, with multiple electronic states of the S<sub>2</sub> molecule produced via excited state dissociation processes. Formation of S + <i>t</i>-BuS is a minor two-body channel at this dissociation energy. The three-body channels are S<sub>2</sub> + H + isobutene, S<sub>2</sub> + CH<sub>3</sub> + propene, and S + SH + isobutene. The first two of these channels result from a sequential dissociation process in which loss of S<sub>2</sub> from <i>t</i>-BuSS results in ground state <i>t</i>-Bu with sufficient internal energy to undergo secondary fragmentation. The third three-body channel, S + SH + isobutene, is attributed to loss of internally excited HS<sub>2</sub> from <i>t</i>-BuSS, which then rapidly dissociates to form S + SH in an asynchronous concerted dissociation process. </p>


Sign in / Sign up

Export Citation Format

Share Document