Photodissociation Dynamics of the Methylsulfinyl Radical at 248 nm

Author(s):  
Isaac Ramphal ◽  
Chin Lee ◽  
Daniel Neumark

The photodissociation dynamics of jet-cooled methylsulfinyl radicals, CH3SO, at 248 nm have been investigated using molecular beam photofragment translational spectroscopy. The primary channel is CH3S + O, which occurs via the initially prepared excited CH3SO state by rapid cleavage of the S-O bond to produce ground state products. The minor SO + CH3 channel has two components in comparable proportions: a fast feature corresponding to rapid C-S cleavage on the excited state to produce CH3 and electronically excited SO, and a slow feature due to internal conversion of CH3SO followed by statistical dissociation on the ground electronic state. Statistical ground state dissociation also produces small amounts of CH2SO, likely sulfine, and H-atoms.

2018 ◽  
Author(s):  
Isaac Ramphal ◽  
Chin Lee ◽  
Daniel Neumark

The photodissociation dynamics of jet-cooled methylsulfinyl radicals, CH3SO, at 248 nm have been investigated using molecular beam photofragment translational spectroscopy. The primary channel is CH3S + O, which occurs via the initially prepared excited CH3SO state by rapid cleavage of the S-O bond to produce ground state products. The minor SO + CH3 channel has two components in comparable proportions: a fast feature corresponding to rapid C-S cleavage on the excited state to produce CH3 and electronically excited SO, and a slow feature due to internal conversion of CH3SO followed by statistical dissociation on the ground electronic state. Statistical ground state dissociation also produces small amounts of CH2SO, likely sulfine, and H-atoms.


2020 ◽  
Author(s):  
Erin Sullivan ◽  
Steven Saric ◽  
Daniel Neumark

<p>Photodissociation of the <i>i</i>-C<sub>3</sub>H<sub>7</sub>O radical is investigated using fast beam photofragment translational spectroscopy. Neutral <i>i</i>-C<sub>3</sub>H<sub>7</sub>O radicals are produced through the photodetachment of a fast beam of <i>i</i>-C<sub>3</sub>H<sub>7</sub>O<sup>-</sup> anions and are subsequently dissociated using 248 nm (5.0 eV). The dominant product channels are CH<sub>3</sub> + CH<sub>3</sub>CHO and OH + C<sub>3</sub>H<sub>6</sub> with some contribution from H + C<sub>3</sub>H<sub>6</sub>O. CH<sub>3</sub> and H loss are attributed to dissociation on the ground electronic state of <i>i</i>-C<sub>3</sub>H<sub>7</sub>O, but in a nonstatistical manner because RRKM dissociation rates exceed the rate of energy randomization. Translational energy and angular distributions for OH loss are consistent with ground state dissociation, but the branching ratio for this channel is considerably higher than predicted from RRKM rate calculations. These results corroborate what has been observed previously in C<sub>2</sub>H<sub>5</sub>O dissociation at 5.2 eV that yields CH<sub>3</sub>, H, and OH loss. Additionally, <i>i</i>-C<sub>3</sub>H<sub>7</sub>O undergoes three-body fragmentation to CH<sub>3</sub> + CH<sub>3</sub> + HCO and CH<sub>3</sub> + CH<sub>4</sub> + CO. These three-body channels are attributed to dissociation of <i>i</i>-C<sub>3</sub>H<sub>7</sub>O to CH<sub>3</sub> + CH<sub>3</sub>CHO, followed by secondary dissociation of CH<sub>3</sub>CHO on its ground electronic state.</p>


2020 ◽  
Author(s):  
Erin Sullivan ◽  
Steven Saric ◽  
Daniel Neumark

<p>Photodissociation of the <i>i</i>-C<sub>3</sub>H<sub>7</sub>O radical is investigated using fast beam photofragment translational spectroscopy. Neutral <i>i</i>-C<sub>3</sub>H<sub>7</sub>O radicals are produced through the photodetachment of a fast beam of <i>i</i>-C<sub>3</sub>H<sub>7</sub>O<sup>-</sup> anions and are subsequently dissociated using 248 nm (5.0 eV). The dominant product channels are CH<sub>3</sub> + CH<sub>3</sub>CHO and OH + C<sub>3</sub>H<sub>6</sub> with some contribution from H + C<sub>3</sub>H<sub>6</sub>O. CH<sub>3</sub> and H loss are attributed to dissociation on the ground electronic state of <i>i</i>-C<sub>3</sub>H<sub>7</sub>O, but in a nonstatistical manner because RRKM dissociation rates exceed the rate of energy randomization. Translational energy and angular distributions for OH loss are consistent with ground state dissociation, but the branching ratio for this channel is considerably higher than predicted from RRKM rate calculations. These results corroborate what has been observed previously in C<sub>2</sub>H<sub>5</sub>O dissociation at 5.2 eV that yields CH<sub>3</sub>, H, and OH loss. Additionally, <i>i</i>-C<sub>3</sub>H<sub>7</sub>O undergoes three-body fragmentation to CH<sub>3</sub> + CH<sub>3</sub> + HCO and CH<sub>3</sub> + CH<sub>4</sub> + CO. These three-body channels are attributed to dissociation of <i>i</i>-C<sub>3</sub>H<sub>7</sub>O to CH<sub>3</sub> + CH<sub>3</sub>CHO, followed by secondary dissociation of CH<sub>3</sub>CHO on its ground electronic state.</p>


2019 ◽  
Vol 21 (39) ◽  
pp. 21960-21965 ◽  
Author(s):  
Mark A. Burton ◽  
Benjamin T. Russ ◽  
Matthew P. Bucchino ◽  
Phillip M. Sheridan ◽  
Lucy M. Ziurys

Measurement of the millimeter-wave spectrum of the KO radical, using direct absorption methods, suggests that the ground electronic state is X2Πi with a close-lying excited state approximately 120 cm−1 higher in energy.


2016 ◽  
Vol 194 ◽  
pp. 683-708 ◽  
Author(s):  
Katharina Röttger ◽  
Hugo J. B. Marroux ◽  
Hendrik Böhnke ◽  
David T. J. Morris ◽  
Angus T. Voice ◽  
...  

Ultrafast transient electronic and vibrational absorption spectroscopy (TEAS and TVAS) of 2′-deoxy-cytidine (dC) and 2′-deoxy-thymidine (dT) dissolved in chloroform examines their excited-state dynamics and the recovery of ground electronic state molecules following absorption of ultraviolet light. The chloroform serves as a weakly interacting solvent, allowing comparisons to be drawn with prior experimental studies of the photodynamics of these nucleosides in the gas phase and in polar solvents such as water. The pyrimidine base nucleosides have some propensity to dimerize in aprotic solvents, but the monomer photochemistry can be resolved clearly and is the focus of this study. UV absorption at a wavelength of 260 nm excites a 1ππ* ← S0 transition, but prompt crossing of a significant fraction (50% in dC, 17% in dT) of the 1ππ* population into a nearby 1nπ* state is too fast for the experiments to resolve. The remaining flux on the 1ππ* state leaves the vertical Franck–Condon region and encounters a conical intersection with the ground electronic state of ethylenic twist character. In dC, the 1ππ* state decays to the ground state with a time constant of 1.1 ± 0.1 ps. The lifetime of the 1nπ* state is much longer in the canonical forms of both molecules: recovery of the ground state population from these states occurs with time constants of 18.6 ± 1.1 ps in amino-oxo dC and ∼114 ps in dT, indicating potential energy barriers to the 1nπ*/S0 conical intersections. The small fraction of the imino-oxo tautomer of dC present in solution has a longer-lived 1nπ* state with a lifetime for ground state recovery of 193 ± 55 ps. No evidence is found for photo-induced tautomerization of amino-oxo dC to the imino-oxo form, or for population of low lying triplet states of this nucleoside. In contrast, ∼8% of the UV-excited dT molecules access the long-lived T1 (3ππ*) state through the 1nπ* state. The primary influence of the solvent appears to be the degree to which it destabilizes the states of 1nπ* character, with consequences for the lifetimes of these states as well as the triplet state yields.


2015 ◽  
Vol 17 (44) ◽  
pp. 29518-29530 ◽  
Author(s):  
Matthieu Sala ◽  
Stéphane Guérin ◽  
Fabien Gatti

We propose a new mechanism for the radiationless decay of photoexcited pyrazine to its ground electronic state involving a conical intersection between the dark Au(nπ) state and the ground state.


2019 ◽  
Vol 5 (9) ◽  
pp. eaax6625 ◽  
Author(s):  
Jennifer M. Ruddock ◽  
Haiwang Yong ◽  
Brian Stankus ◽  
Wenpeng Du ◽  
Nathan Goff ◽  
...  

We explore the photo-induced kinetics of 1,3-cyclohexadiene upon excitation at 200 nm to the 3p state by ultrafast time-resolved, gas-phase x-ray scattering using the Linac Coherent Light Source. Analysis of the scattering anisotropy reveals that the excitation leads to the 3px and 3py Rydberg electronic states, which relax to the ground state with a time constant of 208 ± 11 fs. In contrast to the well-studied 266 nm excitation, at 200 nm the majority of the molecules (76 ± 3%) relax to vibrationally hot cyclohexadiene in the ground electronic state. A subsequent reaction on the ground electronic state surface leads from the hot cyclohexadiene to 1,3,5-hexatriene, with rates for the forward and backward reactions of 174 ± 13 and 355 ± 45 ps, respectively. The scattering pattern of the final hexatriene product reveals a thermal distribution of rotamers about the carbon-carbon single bonds.


1987 ◽  
Vol 7 (2-4) ◽  
pp. 197-212 ◽  
Author(s):  
Katsuhiko Okuyama ◽  
Naohiko Mikami ◽  
Mitsuo Ito

The fluorescence excitation and dispersed fluorescence spectra of jet-cooled o- and m-toluidine were observed. Vibrational analysis of the spectra provided us with the potentials for the internal rotation of the CH3 group in both ground and excited states. In o-toluidine, a large potential barrier to the internal rotation in the ground state is practically removed in the excited state. On the other hand, a nearly free internal rotation of the CH3 group in the ground state of m-toluidine gains a large barrier by the electronic excitation. The great change in the barrier height upon the electronic excitation is more remarkable than that found for fluorotoluene. A close relationship between the barrier height and the π electron density at the ring carbon atom was found, indicating the hyperconjugation as the origin of the barrier height in the absence of steric hindrance.


Sign in / Sign up

Export Citation Format

Share Document