Photo-driven electron transfer from the highly reducing excited state of naphthalene diimide radical anion to a CO2 reduction catalyst within a molecular triad

2017 ◽  
Vol 198 ◽  
pp. 235-249 ◽  
Author(s):  
Jose F. Martinez ◽  
Nathan T. La Porte ◽  
Catherine M. Mauck ◽  
Michael R. Wasielewski

The naphthalene-1,4:5,8-bis(dicarboximide) radical anion (NDI−˙), which is easily produced by mild chemical or electrochemical reduction (−0.5 V vs. SCE), can be photoexcited at wavelengths as long as 785 nm, and has an excited state (NDI−˙*) oxidation potential of −2.1 V vs. SCE, making it a very attractive choice for artificial photosynthetic systems that require powerful photoreductants, such as CO2 reduction catalysts. However, once an electron is transferred from NDI−˙* to an acceptor directly bound to it, a combination of strong electronic coupling and favorable free energy change frequently make the back electron transfer rapid. To mitigate this effect, we have designed a molecular triad system comprising an NDI−˙ chromophoric donor, a 9,10-diphenylanthracene (DPA) intermediate acceptor, and a Re(dmb)(CO)3 carbon dioxide reduction catalyst, where dmb is 4,4′-dimethyl-2,2′-bipyridine, as the terminal acceptor. Photoexcitation of NDI−˙ to NDI−˙* is followed by ultrafast reduction of DPA to DPA−˙, which then rapidly reduces the metal complex. The overall time constant for the forward electron transfer to reduce the metal complex is τ = 20.8 ps, while the time constant for back-electron transfer is six orders of magnitude longer, τ = 43.4 μs. Achieving long-lived, highly reduced states of these metal complexes is a necessary condition for their use as catalysts. The extremely long lifetime of the reduced metal complex is attributed to careful tuning of the redox potentials of the chromophore and intermediate acceptor. The NDI−˙–DPA fragment presents many attractive features for incorporation into other photoinduced electron transfer assemblies directed at the long-lived photosensitization of difficult-to-reduce catalytic centers.

2017 ◽  
Vol 19 (22) ◽  
pp. 14412-14423 ◽  
Author(s):  
Ewelina Krzyszkowska ◽  
Justyna Walkowiak-Kulikowska ◽  
Sven Stienen ◽  
Aleksandra Wojcik

Quenching of the thionine singlet excited state in covalently functionalized graphene oxide with an efficient back electron transfer process.


1989 ◽  
Vol 67 (4) ◽  
pp. 689-698 ◽  
Author(s):  
Donald R. Arnold ◽  
Shelley A. Mines

Alkenes, conjugated with a phenyl group, can be converted to nonconjugated tautomers by sensitized (electron transfer) irradiation. For example, irradiation of an acetonitrile solution of the conjugated alkene 1-phenylpropene, the electron accepting photosensitizer 1,4-dicyanobenzene, the cosensitizer biphenyl, and the base 2,4,6-trimethylpyridine gave the nonconjugated tautomer 3-phenylpropene in good yield. Similarly, 2-methyl-1-phenylpropene gave 2-methyl-3-phenylpropene, and 1-phenyl-1-butene gaveE- and Z-1-phenyl-2-butene. The reaction also works well with cyclic alkenes. For example, 1-phenylcyclohexene gave 3-phenylcyclohexene, and 1-(phenylmethylene)cyclohexane gave 1-(phenylmethyl)cyclohexene. The proposed mechanism involves the initial formation of the alkene radical cation and the sensitizer radical anion, induced by irradiation of the sensitizer and mediated by the cosensitizer. Deprotonation of the radical cation assisted by the base gives the ambident radical, which is then reduced to the anion by the sensitizer radical anion. Protonation of the ambident anion at the benzylic position completes the sequence. Reprotonation at the original position is an energy wasting step. Tautomerization is driven toward the isomer with the higher oxidation potential, which is, in the cases studied, the less thermodynamically stable isomer. The regioselectivity of the deprotonation step is dependent upon the conformation of the allylic carbon–hydrogen bond. The tautomerization of 2-methyl- 1-phenylbutene gave both 2-phenylmethyl-1-butène and 2-methyl-1-phenyl-2-butene (E and Z isomers), while 2,3-dimethyl- 1-phenylbutene gave only 3-methyl-2-phenylmethyl-1 -butene. In the latter case, steric interaction of the methyls on the isopropyl group prevents effective overlap of the tertiary carbon–hydrogen bond with the singly occupied molecular orbital, thus inhibiting deprotonation from this site. Keywords: photosensitized, electron transfer, alkene, tautomerization, radical cation.


1987 ◽  
Vol 65 (9) ◽  
pp. 2312-2314 ◽  
Author(s):  
Donald R. Arnold ◽  
Shelley A. Mines

The photosensitized (electron transfer) irradiation of several conjugated 1,1-diphenyl alkenes, in acetonitrile with 1,4-dicyanobenzene or 1-cyanonapthalene as electron accepting sensitizer and 2,6-lutidine as base, leads essentially quantitatively to tautomerization to the less stable unconjugated isomer(s). The proposed mechanism for this reaction involves formation of the alkene radical cation and sensitizer radical anion followed by deprotonation of the radical cation, reduction of the resulting radical to the ambident anion by back electron transfer from the radical anion, and reprotonation. There are several steps in this mechanism that could control the ratio of isomers. Evidence is provided that, at least in some cases, it is the relative rate of deprotonation from the isomeric radical cations that is the determining factor. This rate is influenced by the conformation of the radical cation; the carbon–hydrogen bond involved in the deprotonation step must overlap with the singly occupied molecular orbital.


2014 ◽  
Vol 43 (47) ◽  
pp. 17606-17609 ◽  
Author(s):  
Stephen J. Devereux ◽  
Páraic M. Keane ◽  
Suni Vasudevan ◽  
Igor V. Sazanovich ◽  
Michael Towrie ◽  
...  

Excited-state quenching of DNA intercalated [Cr(phen)2(dppz)]3+ by guanine proceeds by rapid forward and back electron transfer of <3 ps.


Sign in / Sign up

Export Citation Format

Share Document