Polymeric prodrugs conjugated with reduction-sensitive dextran–camptothecin and pH-responsive dextran–doxorubicin: an effective combinatorial drug delivery platform for cancer therapy

2016 ◽  
Vol 7 (25) ◽  
pp. 4198-4212 ◽  
Author(s):  
Dongling Cao ◽  
Jinlin He ◽  
Jiaying Xu ◽  
Mingzu Zhang ◽  
Lin Zhao ◽  
...  

Two types of stimuli-sensitive polymeric prodrugs for combinatorial cancer therapy have been prepared and found to exhibit favorable anticancer activity in vitro and in vivo.

2016 ◽  
Vol 4 (29) ◽  
pp. 5046-5058 ◽  
Author(s):  
Lin Li ◽  
Lu Tian ◽  
Yongli Wang ◽  
Wenjing Zhao ◽  
Fangqin Cheng ◽  
...  

We introduce a simple and effective strategy to design a promising drug delivery platform for improving the biomedical applications of smart nanodiamond carriers.


Nano Letters ◽  
2013 ◽  
Vol 13 (6) ◽  
pp. 2528-2534 ◽  
Author(s):  
Tuo Wei ◽  
Juan Liu ◽  
Huili Ma ◽  
Qiang Cheng ◽  
Yuanyu Huang ◽  
...  

2016 ◽  
Vol 4 (15) ◽  
pp. 2691-2696 ◽  
Author(s):  
Yong Yao ◽  
Yang Wang ◽  
Ruibo Zhao ◽  
Li Shao ◽  
Ruikang Tang ◽  
...  

A decomposable and intracellular pH-responsive drug delivery system by immobilizing a water-soluble pillar[5]arene onto hollow mesoporous nanoparticles through host–guest complexation was successfully prepared and its application in controlled drug delivery in vitro and in vivo was also investigated.


2011 ◽  
Vol 21 (14) ◽  
pp. 5299 ◽  
Author(s):  
Tingting Wang ◽  
Fang Chai ◽  
Qin Fu ◽  
Lingyu Zhang ◽  
Haiyan Liu ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (56) ◽  
pp. 44998-45014 ◽  
Author(s):  
Krishnamurthy Shanthi ◽  
Karuppaiya Vimala ◽  
Dhanaraj Gopi ◽  
Soundarapandian Kannan

Schematic illustration of the possible mechanism of pH based drug delivery system of DOX conjugated PEGylated PdNPs induced apoptosis in HeLa cells.


2020 ◽  
Author(s):  
Andrew Tae-Jun Kwon ◽  
Kohta Mohri ◽  
Satoshi Takizawa ◽  
Takahiro Arakawa ◽  
Maiko Takahashi ◽  
...  

AbstractAntibody-drug conjugates offers many advantages as a drug delivery platform that allows for highly specific targeting of cell types and genes. Ideally, testing the efficacy of these systems requires two cell types to be different only in the gene targeted by the drug, with the rest of the cellular machinery unchanged, in order to minimize other potential differences from obscuring the effects of the drug. In this study, we created multiple variants of U87MG cells with targeted mutation in the TP53 gene using the CRISPR-Cas9 system, and determined that their major transcriptional differences stem from the loss of p53 function. Using the transcriptome data, we predicted which mutant clones would have less divergent phenotypes from the wild type and thereby serve as the best candidates to be used as drug delivery testing platforms. Further in vitro and in vivo assays of cell morphology, proliferation rate and target antigen-mediated uptake supported our predictions. Based on the combined analysis results, we successfully selected the best qualifying mutant clone. This study serves as proof-of-principle of the approach and paves the way for extending to additional cell types and target genes.


Author(s):  
Seyedeh R. Alizadeh ◽  
Mohammad A. Ebrahimzadeh

Background: Cancer is defined as an abnormal/uncontrolled cell growth that shows rapid cell division. This disease is annually recognized in more than ten million people. Nanomaterials can be used as new strategies for cancer therapy. Nanostructured devices have developed for drug delivery and controlled release and created novel anticancer chemotherapies. Nanomaterials were taken into consideration because of their new properties, containing a large specific surface area and high reactivity. Copper oxide nanoparticles (CuONPs) have potential applications in many fields like heterogeneous catalysis, antibacterial, anticancer, antioxidant, antifungal, antiviral, imaging agents, and drug delivery agents in biomedicine. CuONPs display different physical properties, such as hightemperature superconductivity, electron correlation effects, and spin dynamics. NPs can be synthesized using different methods like physical, chemical, and biological methods. Methods: Copper oxide nanoparticles (CuONPs) have been suggested for its broad usage in biomedical applications. In this review, we tried to exhibit the results of significant anticancer activity of green synthesized CuONPs and their characterization by different analytical techniques such as UV-Vis, FT-IR, XRD, EDAX, DLS, SEM, and TEM. Results: The green method for the synthesis of CuO nanoparticles as eco-friendly, cost-effective, and facile method is the more effective method. Synthesized CuONPs from this method have an appropriate size and shape. The Green synthesized CuONPs exhibited high potential against several breast cancer (AMJ-13, MCF-7, and HBL-100 cell lines), cervical cancer (HeLa), colon cancer (HCT-116), gastric cancer (human adenocarcinoma AGS cell line), lung cancer (A549), leukemia cancer, and other cancers with the main toxicity approach of increasing ROS production. Conclusion: The present review confirms the importance of green synthesized CuO nanoparticles in medical science especially cancer therapy that exhibited high activity against different cancer in both in vitro and in vivo. The main toxicity approach of CuONPs is increasing the production of reactive oxygen species (ROS). It needs to perform more studies about in vivo cancer therapy and following clinical trial testing in the future. We believe that green synthesized CuO nanoparticles can be used for the improvement of different diseases.


2014 ◽  
Vol 474 (1-2) ◽  
pp. 232-240 ◽  
Author(s):  
Qingqing Xiong ◽  
Mingming Zhang ◽  
Zhibao Zhang ◽  
Wei Shen ◽  
Lingrong Liu ◽  
...  

2001 ◽  
Vol 53 (2) ◽  
pp. 155-166 ◽  
Author(s):  
J. Taillefer ◽  
N. Brasseur ◽  
J. E. van Lier ◽  
V. Lenaerts ◽  
D. Le Garrec ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document