Functionalized Nanoscale Micelles Improve Drug Delivery for Cancer Therapy in Vitro and in Vivo

Nano Letters ◽  
2013 ◽  
Vol 13 (6) ◽  
pp. 2528-2534 ◽  
Author(s):  
Tuo Wei ◽  
Juan Liu ◽  
Huili Ma ◽  
Qiang Cheng ◽  
Yuanyu Huang ◽  
...  
2011 ◽  
Vol 21 (14) ◽  
pp. 5299 ◽  
Author(s):  
Tingting Wang ◽  
Fang Chai ◽  
Qin Fu ◽  
Lingyu Zhang ◽  
Haiyan Liu ◽  
...  

Author(s):  
Seyedeh R. Alizadeh ◽  
Mohammad A. Ebrahimzadeh

Background: Cancer is defined as an abnormal/uncontrolled cell growth that shows rapid cell division. This disease is annually recognized in more than ten million people. Nanomaterials can be used as new strategies for cancer therapy. Nanostructured devices have developed for drug delivery and controlled release and created novel anticancer chemotherapies. Nanomaterials were taken into consideration because of their new properties, containing a large specific surface area and high reactivity. Copper oxide nanoparticles (CuONPs) have potential applications in many fields like heterogeneous catalysis, antibacterial, anticancer, antioxidant, antifungal, antiviral, imaging agents, and drug delivery agents in biomedicine. CuONPs display different physical properties, such as hightemperature superconductivity, electron correlation effects, and spin dynamics. NPs can be synthesized using different methods like physical, chemical, and biological methods. Methods: Copper oxide nanoparticles (CuONPs) have been suggested for its broad usage in biomedical applications. In this review, we tried to exhibit the results of significant anticancer activity of green synthesized CuONPs and their characterization by different analytical techniques such as UV-Vis, FT-IR, XRD, EDAX, DLS, SEM, and TEM. Results: The green method for the synthesis of CuO nanoparticles as eco-friendly, cost-effective, and facile method is the more effective method. Synthesized CuONPs from this method have an appropriate size and shape. The Green synthesized CuONPs exhibited high potential against several breast cancer (AMJ-13, MCF-7, and HBL-100 cell lines), cervical cancer (HeLa), colon cancer (HCT-116), gastric cancer (human adenocarcinoma AGS cell line), lung cancer (A549), leukemia cancer, and other cancers with the main toxicity approach of increasing ROS production. Conclusion: The present review confirms the importance of green synthesized CuO nanoparticles in medical science especially cancer therapy that exhibited high activity against different cancer in both in vitro and in vivo. The main toxicity approach of CuONPs is increasing the production of reactive oxygen species (ROS). It needs to perform more studies about in vivo cancer therapy and following clinical trial testing in the future. We believe that green synthesized CuO nanoparticles can be used for the improvement of different diseases.


2020 ◽  
Vol 27 (15) ◽  
pp. 2494-2513 ◽  
Author(s):  
João A. Oshiro-Júnior ◽  
Camila Rodero ◽  
Gilmar Hanck-Silva ◽  
Mariana R. Sato ◽  
Renata Carolina Alves ◽  
...  

Stimuli-responsive drug-delivery nanocarriers (DDNs) have been increasingly reported in the literature as an alternative for breast cancer therapy. Stimuli-responsive DDNs are developed with materials that present a drastic change in response to intrinsic/chemical stimuli (pH, redox and enzyme) and extrinsic/physical stimuli (ultrasound, Near-infrared (NIR) light, magnetic field and electric current). In addition, they can be developed using different strategies, such as functionalization with signaling molecules, leading to several advantages, such as (a) improved pharmaceutical properties of liposoluble drugs, (b) selectivity with the tumor tissue decreasing systemic toxic effects, (c) controlled release upon different stimuli, which are all fundamental to improving the therapeutic effectiveness of breast cancer treatment. Therefore, this review summarizes the use of stimuli-responsive DDNs in the treatment of breast cancer. We have divided the discussions into intrinsic and extrinsic stimuli and have separately detailed them regarding their definitions and applications. Finally, we aim to address the ability of these stimuli-responsive DDNs to control the drug release in vitro and the influence on breast cancer therapy, evaluated in vivo in breast cancer models.


2015 ◽  
Vol 51 (76) ◽  
pp. 14338-14341 ◽  
Author(s):  
Shengnan Li ◽  
Lingyu Zhang ◽  
Tingting Wang ◽  
Lu Li ◽  
Chungang Wang ◽  
...  

A novel, mild and facile synthetic route was first developed to fabricate hollow Au nanoflowers (designated as H-AuNFs) with drug loading capacity, superior photothermal conversion property and pH/NIR dual-responsive drug delivery performance for chemo-photothermal synergistic cancer therapy in vitro and in vivo.


2016 ◽  
Vol 7 (25) ◽  
pp. 4198-4212 ◽  
Author(s):  
Dongling Cao ◽  
Jinlin He ◽  
Jiaying Xu ◽  
Mingzu Zhang ◽  
Lin Zhao ◽  
...  

Two types of stimuli-sensitive polymeric prodrugs for combinatorial cancer therapy have been prepared and found to exhibit favorable anticancer activity in vitro and in vivo.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2019 ◽  
Vol 16 (8) ◽  
pp. 688-697
Author(s):  
Ravinder Verma ◽  
Deepak Kaushik

: In vitro lipolysis has emerged as a powerful tool in the development of in vitro in vivo correlation for Lipid-based Drug Delivery System (LbDDS). In vitro lipolysis possesses the ability to mimic the assimilation of LbDDS in the human biological system. The digestion medium for in vitro lipolysis commonly contains an aqueous buffer media, bile salts, phospholipids and sodium chloride. The concentrations of these compounds are defined by the physiological conditions prevailing in the fasted or fed state. The pH of the medium is monitored by a pH-sensitive electrode connected to a computercontrolled pH-stat device capable of maintaining a predefined pH value via titration with sodium hydroxide. Copenhagen, Monash and Jerusalem are used as different models for in vitro lipolysis studies. The most common approach used in evaluating the kinetics of lipolysis of emulsion-based encapsulation systems is the pH-stat titration technique. This is widely used in both the nutritional and the pharmacological research fields as a rapid screening tool. Analytical tools for the assessment of in vitro lipolysis include HPLC, GC, HPTLC, SEM, Cryo TEM, Electron paramagnetic resonance spectroscopy, Raman spectroscopy and Nanoparticle Tracking Analysis (NTA) for the characterization of the lipids and colloidal phases after digestion of lipids. Various researches have been carried out for the establishment of IVIVC by using in vitro lipolysis models. The current publication also presents an updated review of various researches in the field of in vitro lipolysis.


2020 ◽  
Vol 17 (3) ◽  
pp. 229-245
Author(s):  
Gang Wang ◽  
Junjie Wang ◽  
Rui Guan

Background: Owing to the rich anticancer properties of flavonoids, there is a need for their incorporation into drug delivery vehicles like nanomicelles for safe delivery of the drug into the brain tumor microenvironment. Objective: This study, therefore, aimed to prepare the phospholipid-based Labrasol/Pluronic F68 modified nano micelles loaded with flavonoids (Nano-flavonoids) for the delivery of the drug to the target brain tumor. Methods: Myricetin, quercetin and fisetin were selected as the initial drugs to evaluate the biodistribution and acute toxicity of the drug delivery vehicles in rats with implanted C6 glioma tumors after oral administration, while the uptake, retention, release in human intestinal Caco-2 cells and the effect on the brain endothelial barrier were investigated in Human Brain Microvascular Endothelial Cells (HBMECs). Results: The results demonstrated that nano-flavonoids loaded with myricetin showed more evenly distributed targeting tissues and enhanced anti-tumor efficiency in vivo without significant cytotoxicity to Caco-2 cells and alteration in the Trans Epithelial Electric Resistance (TEER). There was no pathological evidence of renal, hepatic or other organs dysfunction after the administration of nanoflavonoids, which showed no significant influence on cytotoxicity to Caco-2 cells. Conclusion: In conclusion, Labrasol/F68-NMs loaded with MYR and quercetin could enhance antiglioma effect in vitro and in vivo, which may be better tools for medical therapy, while the pharmacokinetics and pharmacodynamics of nano-flavonoids may ensure optimal therapeutic benefits.


Sign in / Sign up

Export Citation Format

Share Document