Microbial lipid production by oleaginous yeasts on Laminaria residue hydrolysates

RSC Advances ◽  
2016 ◽  
Vol 6 (32) ◽  
pp. 26752-26756 ◽  
Author(s):  
Xibin Zhang ◽  
Hongwei Shen ◽  
Xiaobing Yang ◽  
Qian Wang ◽  
Xue Yu ◽  
...  

Laminaria residues, major wastes from the kelp industry, can be effectively converted by oleaginous yeasts into microbial lipids as potential feedstock for biodiesel production.

2015 ◽  
Vol 50 (7) ◽  
pp. 1097-1102 ◽  
Author(s):  
Yandan Wang ◽  
Zhiwei Gong ◽  
Xiaobing Yang ◽  
Hongwei Shen ◽  
Qian Wang ◽  
...  

2015 ◽  
Vol 175 ◽  
pp. 91-96 ◽  
Author(s):  
Xiaobing Yang ◽  
Guojie Jin ◽  
Zhiwei Gong ◽  
Hongwei Shen ◽  
Fengwu Bai ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1009
Author(s):  
Gwon Woo Park ◽  
Seongsoo Son ◽  
Myounghoon Moon ◽  
Subin Sin ◽  
Kyoungseon Min ◽  
...  

Microbial lipid production from oleaginous yeasts is a promising process for the sustainable development of the microbial biodiesel industry. However, the feedstock cost poses an economic problem for the production of microbial biodiesel. After lipid extraction, yeast biomass can be used as an organic source for microbial biodiesel production. In this study, volatile fatty acids (VFAs), produced via anaerobic digestion of a lipid-extracted yeast (LEY) residue, were utilized as a carbon source for the yeast Cryptococcus curvatus. The response surface methodology was used to determine the initial pH and inoculum volume for the optimal VFA production. The experimental result for VFA concentration was 4.51 g/L at an initial pH of 9 and an inoculation 25%. The optimization results from the response surface methodology showed that the maximal VFA concentration was 4.58 g/L at an initial pH of 8.40 and an inoculation of 39.49%. This study indicates that VFAs from LEY can be used as a carbon source for microbial biodiesel production, with the potential to significantly reduce feedstock costs.


2016 ◽  
Vol 182 (2) ◽  
pp. 495-510 ◽  
Author(s):  
Li-ping Liu ◽  
Yang Hu ◽  
Wen-yong Lou ◽  
Ning Li ◽  
Hong Wu ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1053 ◽  
Author(s):  
Xiaozan Dai ◽  
Hongwei Shen ◽  
Qiang Li ◽  
Kamal Rasool ◽  
Qian Wang ◽  
...  

Dry acid pretreatment and biodetoxification (DryPB) has been considered as an advanced technology to treat lignocellulosic materials for improved downstream bioconversion. In this study, the lipid production from DryPB corn stover was investigated by the oleaginous yeast Rhodosporidium toruloides using a new process designated prehydrolysis followed by simultaneous saccharification and lipid production (PreSSLP). The results found that prehydrolysis at 50 °C and then lipid production at 30 °C improved lipid yield by more than 17.0% compared with those without a prehydrolysis step. The highest lipid yield of 0.080 g/g DryPB corn stover was achieved at a solid loading of 12.5%. The fatty acid distribution of lipid products was similar to those of conventional vegetable oils that are used for biodiesel production. Our results suggested that the integration of DryPB process and PreSSLP process can be explored as an improved technology for microbial lipid production from lignocellulosic materials.


2020 ◽  
Vol 43 (9) ◽  
pp. 1629-1638 ◽  
Author(s):  
Samer Younes ◽  
Felix Bracharz ◽  
Dania Awad ◽  
Farah Qoura ◽  
Norbert Mehlmer ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Kimberly C. Lemmer ◽  
Weiping Zhang ◽  
Samantha J. Langer ◽  
Alice C. Dohnalkova ◽  
Dehong Hu ◽  
...  

ABSTRACTLipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their total lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals.IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these alterations can be enhanced by growing cells in bioreactor configurations that can be used industrially. We propose that our findings can inform current and future efforts to increase production of microbial lipids, other fuels, or chemicals that are currently derived from petroleum.


Sign in / Sign up

Export Citation Format

Share Document