Green and efficient synthesis of pyranopyrazoles using [bmim][OH−] as an ionic liquid catalyst in water under microwave irradiation and investigation of their antioxidant activity

RSC Advances ◽  
2016 ◽  
Vol 6 (89) ◽  
pp. 85877-85884 ◽  
Author(s):  
Roghayeh Sharifi Aliabadi ◽  
Nosrat O. Mahmoodi

Green and speedy synthesis of bispyranopyrazoles. [bmim][OH−] ionic liquid. Microwave irradiation. Antioxidant activity compared to vitamin E and C.

2006 ◽  
Vol 10 (11) ◽  
pp. 1253-1258 ◽  
Author(s):  
Ahmad Shaabani ◽  
Ali Maleki

Metal-free phthalocyanine derivatives have been synthesized in very short times with high yields in the presence of 1,1,3,3-tetramethylguanidinium trifluoroacetate (TMGT) as an ionic liquid or tetrabutylammonium bromide (TBAB) as a phase transfer reagent under both classical heating conditions and using microwave irradiation. The best results were obtained with ionic liquid. Both the ionic liquid and phase transfer reagent can be recycled for subsequent reactions and reused without appreciable loss of efficiency.


2019 ◽  
Vol 16 (7) ◽  
pp. 550-555
Author(s):  
Dinesh K. Jangid ◽  
Keshav L. Ameta ◽  
Surbhi Dhadda ◽  
Anjali Guleria ◽  
Prakash G. Goswami ◽  
...  

Ionic Liquid assisted efficient synthesis of some 2-aminobenzenethiols has been reported using three different Ionic Liquids (ILs) namely methylimidazolium tetrafluoroborate [MIM]+[BF4]−, methylimidazolium chloride [MIM]+[Cl]− and methylimidazolium nitrate [MIM]+[NO3]−. A comparative study has been carried out for the synthesis of target molecules in the presence and absence of IL, leading to conclusion that maximum yield has been observed with [MIM]+[BF4]−.


2019 ◽  
Vol 16 (3) ◽  
pp. 194-201 ◽  
Author(s):  
Renu Bala ◽  
Vandana Devi ◽  
Pratibha Singh ◽  
Navjot Kaur ◽  
Pawandeep Kaur ◽  
...  

Background: Tetrahydroindazole, a member of the fused-pyrazole system, is a least studied class of heterocyclic compounds owing to its scarcity in nature. However, a large number of synthetically prepared tetrahydroindazoles are known to show a variety of biological activities such as interleukin- 2 inducible T-Cell kinase inhibitors, AMPA receptor positive allosteric modulators, antitumor, antituberculosis, anti-inflammatory and antimicrobial activities. Vilsmeier-Haack reaction is one of the most important chemical reactions used for formylation of electron rich arenes. Even though Vilsmeier- Haack reaction was studied on a wide variety of hydrazones derived from active methylene compounds, literature lacks the examples of the use of 4-substituted cyclohexanones as a substrate for the synthesis of 4,5,6,7-tetrahydroindazoles. The study of the reaction of Vilsmeier-Haack reagent with hydrazones derived from cyclic keto compounds having active methylene has been considered the interested topic of investigation. In the present study, ethyl cyclohexanone-4-carboxylate was treated with one equivalent of various hydrazines for two hours and the resulted hydrazones were further treated with an OPC-VH reagent (Vilsmeier-Haack reagent isolated from phthaloyl dichloride and N,Ndimethylformamide) afforded 4,5,6,7-tetrahydroindazoles in excellent yields. The synthesized compounds 4a-f and 5a-f were screened for their antioxidant activities using the DPPH radical scavenging assay. The target compounds were synthesized regioselectively using 4+1 approach in excellent yields. A number of experiments using both conventional heating as well as microwave irradiation methods were tried and on comparison, microwave irradiation method was found excellent in terms of easy work up, high chemical yields, shortened reaction times, clean and, no by-products formation. Some of the synthesized compounds showed significant antioxidant activity. The microwave assisted synthesis of 4,5,6,7-tetrahydroindazoles from ethyl cyclohexanone-4-carboxylate has been reported under mild conditions in excellent yield. Easy work up, high chemical yield, shortened reaction times, clean and no by-products formation are the major advantages of this protocol. These advantages may make this method useful for chemists who are interested in developing novel 4,5,6,7-tetrahydroindazole based drugs.


2020 ◽  
Vol 7 (2) ◽  
pp. 145-156
Author(s):  
Pravinkumar Patil ◽  
Gangadhar Bhopalkar ◽  
Sainath Zangade

Background: The various industrial processes have a diverse effect on the environment through pollution. In view of these observations, some environmentally benign synthetically protocols have developed under green chemistry. For rapid and sustainable synthesis, the microwave irradiation (MI) has gained popularity as a powerful tool compared to conventional synthesis. The present study describes the synthesis of novel substituted 1, 3-diaryl-2-propene-1-one derivative using alumina supported K3PO4-MWI combination. Objective: Chalcones are important compounds which are widely spread in nature like in fruits, vegetables, tea, spices, etc. The 2’-hydroxy derivative of chalcones plays an important role in the synthesis of bioactive compounds. The present communication deals with a convenient and rapid synthesis of 1, 3-diaryl-2-propene-1-one under the support of alumina-tripotassium phosphate and microwave irradiation. Our efforts are focused on the introduction of typical and easier route for the synthesis of title compounds using a microwave. All synthesized chalcones have been screened and evaluated for the antioxidant activity by DPPH and nitric oxide radical scavenging. Some of these compounds are found to be more potent scavengers and may lead to the development of a new class of antioxidants. Methods: The α, β-unsaturated carbonyl functionality contains two electrophilic centers allowing them to undergo addition and cyclization reactions with different nucleophiles. In the literature survey, we found that Chalcones were synthesized using tripotassium phosphate catalyst under refluxing by a conventional method. A novel method for the synthesis of 1, 3-diaryl-2-propene-1-one via Claisen Schmidt has been introduced by reacting substituted 2’- hydroxyl acetonaphthones with substituted aromatic aldehydes under the support of basic alumina –tripotassium phosphate via microwave radiations. Formation of corresponding Chalcones was confirmed by spectral studies followed by their screening for antioxidant activity. The scavenging activity is expressed in terms of % inhibition and IC50 value (μg/ml). Results: The structures of newly synthesized Chalcones were confirmed and in good agreement with obtained spectral analysis such as IR, NMR, Mass and elemental analysis. Commercially available basic alumina and tripotassium phosphate in combination of microwave were utilized and found to be effective, convenient route for the synthesis of 1, 3-diaryl-2-propene-1-one derivatives with desirable yields in short reaction time (5-12 min). The results of antioxidant activity revealed that the IC50 value for compounds 3a, 3d, 3e, 3f, 3g, 3h, 3j, 3l and 3n are lower than that of standard ascorbic acid to scavenge DPPH radical. This indicates that these compounds are more significant scavengers in comparison with standard drug. On the other hand, compounds 3a, 3b, 3c, 3d, 3g, 3l and 3n are more potent scavengers for NO free radical. Conclusion: We have introduced an efficient, ecofriendly, simple and fast microwave assisted method using basic alumina-tripotassium phosphate for the synthesis of 1, 3-diaryl-2-propene-1- one derivatives. Microwave irradiation provides an effective way for the preparation of Chalcones in terms of several advantages as a simple procedure, short reaction time, milder reaction condition, cleaner reaction and excellent yield. The scavenging activity of chalcones against DPPH and NO free radicals showed excellent properties of antioxidants.


Sign in / Sign up

Export Citation Format

Share Document