Hybridization of inorganic CoB noncrystal with graphene and its Kubas-enhanced hydrogen adsorption at room temperature

RSC Advances ◽  
2016 ◽  
Vol 6 (96) ◽  
pp. 93238-93244 ◽  
Author(s):  
Xiaobo Li ◽  
Shuchao Sun ◽  
Jianjiao Zhang ◽  
Kan Luo ◽  
Peng Gao ◽  
...  

In this work an archetypical hybrid material has been prepared by the reaction of an inorganic CoB noncrystal with graphene by a high-energy ball-milling process, which showed an enhanced electrochemical hydrogen storage ability induced by the Co–B–C structure.

2010 ◽  
Vol 35 (9) ◽  
pp. 4027-4040 ◽  
Author(s):  
Cheng-Hong Liu ◽  
Yi-Chia Kuo ◽  
Bing-Hung Chen ◽  
Chan-Li Hsueh ◽  
Kuo-Jen Hwang ◽  
...  

2017 ◽  
Vol 899 ◽  
pp. 19-24
Author(s):  
Lucas Moreira Ferreira ◽  
Stephania Capellari Rezende ◽  
Antonio Augusto Araújo Pinto da Silva ◽  
Gael Yves Poirier ◽  
Gilberto Carvalho Coelho ◽  
...  

The present work reports on the microstructure and oxidation resistance of Ni-25Nb, Ni-20Nb-5Ta and Ni-15Nb-10Ta alloys produced by high-energy ball milling and subsequent sintering. The sintered samples were characterized by optical microscopy, scanning electron microscopy, X-ray diffraction, energy dispersive spectrometry, and static oxidation tests. Homogeneous microstructures of the binary and ternary alloys indicated the major presence of the β-Ni3Nb compound as matrix, which dissolved large amounts of tantalum. Consequently, the β-Ni3Nb peaks moved toward the direction of smaller diffraction angles. Iron contamination lower than 6.7 at.-% was detected by EDS analysis, which were picked-up during the previous ball milling process. After the static oxidation tests (1100°C for 4 h) the sintered Ni-25Nb, Ni-20Nb-5Ta and Ni-15Nb-10Ta alloys presented mass gains of 31.5%, 30.5% and 28.8%, respectively. Despite the higher densification of the Ni-15Nb-10Ta alloy, the results suggested that the tantalum addition contributed to improve the oxidation resistance of the β-Ni3Nb compound.


2006 ◽  
Vol 54 (1) ◽  
pp. 93-97 ◽  
Author(s):  
J.L. Li ◽  
L.J. Wang ◽  
G.Z. Bai ◽  
W. Jiang

2008 ◽  
Vol 23 (9) ◽  
pp. 2458-2466 ◽  
Author(s):  
JiYong Eom ◽  
HyukSang Kwon

The effects of ball milling on lithium (Li) insertion/extraction properties into/from single-walled carbon nanotubes (SWNTs) were investigated. The SWNTs were synthesized on supported catalysts by thermal chemical-vapor deposition method, purified, and mechanically ball-milled by high-energy ball milling. The purified SWNTs and the ball-milled SWNTs were electrochemically inserted/extracted with Li. The structural and chemical modifications in the ball-milled SWNTs change the insertion/extraction properties of Li ions into/from the ball-milled SWNTs. The reversible capacity (Crev) increases with increase in the ball milling time, from 616 mAh/g (Li1.7C6) for the purified SWNTs to 988 mAh/g (Li2.7C6) for the ball-milled SWNTs. The undesirable irreversible capacity (Cirr) decreases continuously with increase in the ball milling time, from 1573 mAh/g (Li4.2C6) for the purified SWNTs to 845 mAh/g (Li2.3C6) for the ball-milled SWNTs. The enhancedCrevof the ball-milled SWNTs is presumably due to a continuous decrease in theCirrbecause the SWNTs develop a densely packed structure on the ball milling process. The insertion of Li ions into the ball-milled SWNTs is facilitated by various Li insertion sites formed during the ball milling process in spite of small surface area than the purified SWNTs. Lithium ions inserted into various insertion sites enhance theCrevin the ball-milled SWNTs with the large voltage hysteresis by hindrance of the extraction of Li ions from the ball-milled SWNTs. In addition, the ball-milled samples exhibit more stable cycle capacities than the purified samples during the charge/discharge cycling.


Sign in / Sign up

Export Citation Format

Share Document